Abstract:
Aspects disclosed herein include trigger circuitry for electrostatic discharge (ESD) protection. In this regard, in one aspect, an ESD protection circuit is provided to protect an integrated circuit (IC) from an ESD event. Trigger circuitry, which includes a voltage divider for example, divides a voltage spike between a supply rail and a ground rail to provide a trigger voltage. An ESD clamping circuitry is activated to discharge the voltage spike when the trigger voltage is determined to exceed an ESD threshold voltage, thus protecting the IC from being damaged by the voltage spike. By activating the ESD clamping circuitry based on the trigger voltage divided from the voltage spike, it is possible to adapt the ESD protection circuit to provide ESD protection based on different ESD threshold voltages, thus making it possible to deploy the ESD protection circuit on ICs having different ESD protection requirements.
Abstract:
Self-biasing transistor switching circuitry includes a main transistor, a biasing transistor, a first capacitor, and a second capacitor. The body of the main transistor is isolated from the gate, the drain, and the source of the main transistor by an insulating layer. The first capacitor is coupled between the source and the gate of the main transistor. The second capacitor is coupled between the source and the body of the main transistor. The body and the drain of the main transistor are coupled together. The gate and the drain of the biasing transistor are coupled to the gate of the main transistor. The drain of the biasing transistor is coupled to the drain of the main transistor. The self-biasing transistor switching circuitry is adapted to receive an oscillating signal at the drain of the main transistor, and use the oscillating signal to appropriately bias the main transistor.
Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.
Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.