摘要:
A method is provided in one example embodiment and includes configuring a network element for load balancing based on input provided by a mobile gateway, where the configuring includes selecting an instance of a service flow router control function (SFR-C) at the network element based on an Internet protocol (IP) address assigned to a subscriber. The subscriber flow rules can be provided to a service flow user plane of the network element. The configuring may also include selecting a subscriber service proxy (SSP) based on a particular load balancing criterion, where a forwarding plane of the network element is configured based on the subscriber flow rules, and where a return message is communicated to the SFR-C that includes a particular IP address of the selected SSP.
摘要:
A method is provided in one example embodiment and includes maintaining geographical information for a plurality of WiFi access points; and managing radio resources for a user equipment (UE) at a network element using the geographical information for the plurality of WiFi access points. In certain vitamins, the managing includes: verifying a cellular network type for the UE; preferentially admitting the UE if the UE is in a particular zone; verifying if the UE belongs to a first group associated with high data consumption; and verifying if a device associated with the UE belongs to a second group associated with high data consumption.
摘要:
A method is provided in one example embodiment and includes configuring a network element for subscriber-specific service chaining and traffic steering, where the configuring includes programming a selected service flow router user plane element with a subscriber context corresponding to a subscriber's session at a subscriber termination function. The subscriber context comprises instructions to steer subscriber traffic through a plurality of services in a network environment.
摘要:
A method is provided in one example embodiment and includes maintaining geographical information for a plurality of WiFi access points; and managing radio resources for a user equipment (UE) at a network element using the geographical information for the plurality of WiFi access points. In certain vitamins, the managing includes: verifying a cellular network type for the UE; preferentially admitting the UE if the UE is in a particular zone; verifying if the UE belongs to a first group associated with high data consumption; and verifying if a device associated with the UE belongs to a second group associated with high data consumption.
摘要:
Channel quality of an airlink is assessed at an edge router of a radio-access communication network. Based on the assessment, the cause of lost data is determined to be due to traffic congestion or due to poor channel quality. In the latter case, congestion recovery/avoidance processes of a transport protocol of over a spliced transport connection can be overridden to avoid unnecessary limitations to data flow.
摘要:
Methods and systems for providing a dynamic and real time load factor that can be shared with other network elements is disclosed. The load factor can be used in determining the relative load among a set of network elements and in distributing new sessions requests as well as existing session on the set of network elements. The load factor can also be used for determining to which network element a user equipment is handed off. The dynamic load factor can also be shared amongst network elements to determine how the load is balanced among the network elements, such as a mobility management entity (MME).
摘要:
When mobile node is connected to an access point outside the private network, a tunnel is formed between the mobile node and a home agent on the private network for the transfer of packets. When, the mobile node roams into a region accessible to the private network, the mobile node is connected to the private network using a private network access point while maintaining the tunnel between the mobile node and the home agent.
摘要:
A robust IP/UDP/RTP header compression mechanism is provided to correctly reconstruct IP/UDP/RTP headers in the presence of packet losses and errors of unreliable networks. The header compression mechanism may include a compressor/de-compressor implemented for operation similarly to RFC 2508 but designed specifically to address robustness when employed in lossy and error-prone networks. The robust header compression scheme requires that, when a second-order difference of a field is non-zero, not only a particular RTP packet whose second-order difference is non-zero is sent with the new first-order difference, but also those following packets are also sent with the new first-order difference as long as: (a) a period pre-determined by factors such as channel characteristics (e.g., link round-trip time RTT/inter-packet separation); or (b) a positive confirmation is received by the compressor that the new first-order difference has been correctly received. In addition, during a period of communicating with the new first-order difference, if the corresponding RTP field changes again with non-zero second-order difference, the “new” first-order difference is combined with the original first-order difference such that the two first-order differences may be appended together as a simple means of communicating the two first-order differences reliably.
摘要:
A system may provide connectivity service in a multi-tenant network. A first node in the multi-tenant network can receive data packets, each of the data packets identifying one of a plurality of tenant devices. The first node can determine an Internet Protocol (IP) address associated with each of the data packets. The first node can determine a Virtual Local Area Network Identifier (VLAN ID) based on the IP address, the VLAN ID being a unique identifier of a respective one of the tenants. The first node can add the VLAN ID of a corresponding one of the tenants into a header of each of the data packets. The first node can transport the data packets to a second node in the multi-tenant network via a multi-tenant network tunnel protocol.
摘要:
Channel quality of an airlink is assessed at an edge router of a radio-access communication network. Based on the assessment, the cause of lost data is determined to be due to traffic congestion or due to poor channel quality. In the latter case, congestion recovery/avoidance processes of a transport protocol of over a spliced transport connection can be overridden to avoid unnecessary limitations to data flow.