Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
An article for performing a subjective refraction includes a lens having a mean power that varies across the lens in a first direction and a cylindrical power that varies across the lens in a second direction, orthogonal to the first direction, wherein the mean power varies by four diopters or more and the cylindrical power varies by four diopters or more.
Abstract:
An ophthalmic lens element (100) for correcting myopia in a wearer's eye is disclosed. The lens element (100) includes a central zone (102) and a peripheral zone (104). The central zone (102) provides a first optical correction for substantially correcting myopia associated with the foveal region of the wearer's eye. The peripheral zone (104) surrounds the central zone (102) and provides a second optical correction for substantially correcting myopia or hyperopia associated with a peripheral region of the retina of the wearer's eye. A system and method for dispensing or designing an ophthalmic lens element for correcting myopia in a wearer's eye is also disclosed.
Abstract:
The present invention relates to novel ophthalmic lens elements and eyewear having wide field of view, low distortion, improved astigmatism correction where required and enhanced eye protection properties. Series of lens elements have steeply curved spherical reference surfaces. The edged lenses of the series have approximately consistent aperture size, shape and hollow depth across a range of common prescriptions. Novel sunglasses, laser protective eyewear, and lens edgings, coatings and frames are included in the invention.
Abstract:
A method and apparatus for automatically measuring the circumference of a first region enclosed in a second region internal to a living organism, wherein the first and second regions consist of different cellular matter. One embodiment of the present invention includes generating a point inside an interior of the first region. A set of radial vectors are then generated, which emanate from the point in the interior of the first region. A path is then selected which intersects the set of radial vectors. The path is selected by identifying a distinguishable ultrasonic measurement along the respective radial vectors. A length of the selected path is then measured to generate the circumference of the first region.
Abstract:
A bifocal spectacle lens and a method for creating a numerical representation of a bifocal spectacle lens are disclosed. The bifocal spectacle lens includes a distance portion, a near portion, and a transition section situated between the distance portion and the near portion. The distance portion is optimized in view of an optical power for distance vision and the near portion is optimized in view of an optical power for near vision. The transition section is determined such that the transition section creates a continuous transition between the distance portion and the near portion. The distance portion and the near portion are optimized independently of one another and put together with the transition section to form the numerical representation of the bifocal spectacle lens.
Abstract:
A bifocal spectacle lens and a method for creating a numerical representation of a bifocal spectacle lens are disclosed. The bifocal spectacle lens includes a distance portion, a near portion, and a transition section situated between the distance portion and the near portion. The distance portion is optimized in view of an optical power for distance vision and the near portion is optimized in view of an optical power for near vision. The transition section is determined such that the transition section creates a continuous transition between the distance portion and the near portion. The distance portion and the near portion are optimized independently of one another and put together with the transition section to form the numerical representation of the bifocal spectacle lens.
Abstract:
A method of designing and/or selecting a progressive addition lens design for a wearer is disclosed. In an embodiment, the method includes displaying a graphical representation of an initial progressive addition lens design including design parameters having design values. A user interface is provided including, for each of one or more of the design parameters, a control that is adjustable over a range of levels, each level in the range being associated with a corresponding value of the respective design parameter. A control is adjusted to select a level and the selection is processed so as to substantially simultaneously update the displayed graphical representation in accordance with the selected level to provide a modified progressive lens design. A system for designing and/or selecting a progressive addition lens design for a wearer is also disclosed.
Abstract:
An array of progressive ophthalmic lens elements is disclosed. The progressive ophthalmic elements contained in the array having substantially the same addition power and substantially the same optical prescription for distance vision. Each of the progressive ophthalmic lens elements has a progressive lens design characterized by a set of parameters defining a distance zone providing a refracting power for distance vision, a near zone providing a refracting power for near vision and a corridor having a refracting power varying from that of the distance zone to that of the near zone. The progressive ophthalmic lens elements provide, for a range of values or categories of at least two lifestyle and/or biometric parameters of lens wearers, different progressive lens designs in which at least two of the lens design parameters each have a respective value or characteristic attributable to, or associated with, a particular value or category of a respective one of the lifestyle and/or biometric parameters.