Abstract:
The disclosure relates to a voltage converter, converting a first signal of a first voltage to output a second signal of a second voltage. A level shifter receives the first signal to generate the second signal. An isolation circuit is coupled to the output of the level shifter, passing the second signal out. When the input of voltage converter is floated, the isolation circuit stops passing the second signal as the output, instead, the isolation circuit outputs a substitution signal having a predetermined voltage level irrelevant to the input of the level shifter.
Abstract:
A current source for magnetic random access memory (MRAM) is provided, including a band-gap reference circuit, a first stage buffer, and a plurality of second stage buffers. The band-gap reference circuit provides an output reference voltage which is locked by the first stage buffer. The plurality of second stage buffers generate a stable voltage in response to the locked voltage, so as to provide a current for the conducting wire after being converted, such that magnetic memory cell changes its memory state in response to the current. The current source may reduce the discharge time under the operation of biphase current, so as to raise the operating speed. Further, the circuit area of the current source for the MRAM is also reduced. The operation of multiple write wires may be provided simultaneously to achieve parallel write.
Abstract:
An exemplary embodiment of an efuse device is provided, operating in a write mode and a read mode and comprising a source line, a cell, a blow device, and a sensing circuit. The cell has a first terminal coupled to the source line and a second terminal. The blow device is coupled between the second terminal of the cell and a ground terminal. The blow device is turned on in the read mode. The sensing circuit is coupled to the first terminal of the cell and the ground terminal, and is arranged to determine a state of the cell.
Abstract:
An electrically programmable fuse (e-fuse) apparatus includes an e-fuse macro and a switch device. The e-fuse macro is disposed in an integrated circuit, and has a plurality of e-fuse units. The switch device is disposed in the integrated circuit, and has an output node coupled to the e-fuse units and a first input node coupled to a first power source which supplies a first reference voltage acting as a programming voltage of the e-fuse macro. The switch device connects the first power source to the e-fuse units when the e-fuse macro is operated under a programming mode.
Abstract:
An exemplary embodiment of an efuse device is provided and comprises a plurality of word lines, at least one bit line, a plurality of cells, a plurality of first selection devices, and at least one second selection device. The word lines are interlaced with the bit line. The cells are disposed in an array, and each corresponds to one set of the interlaced word line and bit line. Each first selection device is coupled to one of the word lines, and the second selection device is coupled to the bit line.
Abstract:
Disclosed is a build-in self-diagnosis and repair method and apparatus in a memory with syndrome identification. It applies a fail-pattern identification and a syndrome-format structure to identify at least one type of faulty syndrome in the memory during a memory testing, then generates and exports fault syndrome information associated with the corresponding faulty syndrome. According to the fault syndrome information, the method applies a redundancy analysis algorithm, allocates spare memory elements and repairs the faulty cells in the memory. The syndrome-format structure respectively applies single-faulty-word-syndrome format, faulty-row-segment-syndrome format, and faulty-column-segment-syndrome format for different faulty syndromes, such as faulty row segments and single faulty words, faulty column segments and single faulty words, all of single faulty words, faulty row segments and faulty column segments, and so on.