Abstract:
Disclosed herein are systems and methods for protecting a subject from embolisms during TAVI and other percutaneous valve procedures. Some embodiments include two flexible catheters designed to pass over a guidewire into two separate arteries, such as carotid or innominate arteries, each flexible catheter including a vessel blocking mechanism and a bypass feature that prevents ischemia while the vessel blocking mechanism is in use. Other embodiments include a single, bifurcated flexible catheter having two arms, each of which is configured to protect a different artery. In some embodiments, each arm includes a vessel blocking mechanism and a bypass feature that prevents ischemia while the vessel blocking mechanism is in use. In some embodiments, the systems also may include one or more concentric guidewires.
Abstract:
A system is provided for treating valvular disease percutaneously though a ventricular apex of the heart. The system includes a needle for piercing through the ventricular apex of the heart and creating a hole whereby a catheter can be passed through the skin and the wall of the heart to gain access to the interior of the heart. Once percutaneous access to the heart is obtained, any of a variety of techniques can be utilized for annular and/or valvular therapy and/or repair through, the catheter. A closure device is necessary for closing the puncture of the heart. Any of a variety of vascular closure devices can be modified to be utilized with the system to close the puncture of the ventricular apex of the heart.
Abstract:
An apparatus and method for removing an object from a vessel are disclosed. The apparatus includes an expandable catheter, an expandable funnel, and a snare device configured to snare an object within the vessel. A distal end of the expandable catheter may be manipulable such that retraction of the expandable catheter allows the expandable funnel device to expand. Once the snare device has been manipulated to capture the object, the snare device and object may then be retracted into the funnel device, which may then protect the surrounding structures from being damaged by the object. In some embodiments, the expended funnel device, snare device, and object may be retracted into the expandable catheter in order to further protect the surrounding structures from damage.
Abstract:
This invention provides a device and controllably expansive tool tip for thrombus removal. According to one embodiment, the controllably expansive thrombus removal tool tip (e.g., a screen and/or mesh) may be collapsed by pushing on an actuating handle, and then advanced into a balloon or guiding catheter until a distal end of device has reached the thrombus. The tool tip is then expanded by pulling the actuating handle backward; and the radially extended (expanded) tool tip is moved to receive and substantially surround (e.g., encompass) the thrombus. The tool tip may then be collapsed again by pushing on the actuating handle to engage (tighten around) the thrombus, and the device may be withdrawn from a patient's body through the vascular system with the thrombus engaged by the tool tip.
Abstract:
A system is provided for treating valvular disease percutaneously though a ventricular apex of the heart. The system includes a needle for piercing through the ventricular apex of the heart and creating a hole whereby a catheter can be passed through the skin and the wall of the heart to gain access to the interior of the heart. Once percutaneous access to the heart is obtained, any of a variety of techniques can be utilized for annular and/or valvular therapy and/or repair through the catheter. A closure device is necessary for closing the puncture of the heart. Any of a variety of vascular closure devices can be modified to be utilized with the system to close the puncture of the ventricular apex of the heart.
Abstract:
A stent is provided with a multi-layer structure, combining one or more mesh layers with one or more film layers. The film layer(s) are configured to substantially prevent growth of an inner lining of a blood vessel, where the stent is placed, through the mesh layer(s). The end-to-end length of the film layer(s) may be greater than the lengths of the mesh layer(s) by at least about 0.5 mm. The mesh and film layers include a radiopaque portion adjacent their ends to provide an X-ray indication of whether the mesh layer(s) have expanded beyond the ends of the film layer(s). If the stent includes inner and outer film layers and a middle mesh layer, the film layers may be sealed together adjacent the ends, encasing and fixing in place the middle layer. The mesh layer may be constructed to be more compliant adjacent its distal end and to expand more rapidly in response to expansion of a balloon catheter as compared to a middle portion of the mesh layer.
Abstract:
Disclosed herein are extension members for use with a standard guide catheter, which extension members provide backup support against forces that would otherwise tend to dislodge the guide catheter from the branch artery during interventional cardiology devices. During use, the extension member may be deeply seated in a branch artery that branches off from a main artery when extended through the lumen of the guide catheter and beyond the distal end of the guide catheter. An expandable balloon disposed adjacent the distal tip of the extension member provides additional stabilization and backup support. Also disclosed are methods of using the extension members.
Abstract:
A system for deploying a stent-graft from the femoral artery into the femoral vein and back into the femoral artery in order to bypass a femoral occlusion comprises a penetration catheter and a guidewire capture and stabilization catheter. The penetration catheter may be advanced contralaterally to a location above the occlusion and the capture and stabilization catheter may be introduced upwardly through the femoral vein. The penetration tool on the penetration catheter is used in multiple steps to deploy guidewires which are then used to deploy the stent-graft in the desired location.
Abstract:
Disclosed herein are systems and methods for protecting a subject from embolisms during TAVI percutaneous valve procedures, coronary bypass surgery and heart valve surgery. Various embodiments include an intravascular embolism protection device that includes an elongated, compliant frame made from a material having a shape-memory function, and a mesh material coupled to the elongated, compliant frame, the mesh material having a pore size selected to allow blood to pass therethrough while retaining potential emboli. In some embodiments, the embolism protection device has a collapsed state wherein device is configured to fit within the lumen of a support catheter and an expanded state wherein the embolism protection device is configured to cover a plurality of arterial branch ostias.
Abstract:
An embolism protection system is disclosed that provides a first wire having a proximal end, a distal end, and an outer diameter; a second wire having a proximal end, a distal end, an inner lumen, and an outer diameter, the inner lumen sized to accommodate the outer diameter of the first wire; a third having a proximal end, a distal end, and an inner lumen, the inner lumen sized to accommodate the outer diameter of the second wire; and a substantially conical filter device formed substantially from porous metal mesh and having a central apex, a collapsed state, and an expanded state, wherein the substantially conical filter device is adapted to couple to the second wire at or near the distal end of the second wire, the second wire passing through the central apex, and wherein the substantially conical filter device is adapted to assume the expanded state when the third wire is retracted from the distal end of the second wire, and is adapted to assume the collapsed state when the third wire is advanced over the substantially conical filter device and towards the distal end of the second wire.