Abstract:
Computer assisted systems, methods and mediums for filling one or more orders. One embodiment of the present invention is a system that includes an order consolidation station configured to receive at least one bottle containing pills individually counted and/or at least one package containing pharmaceutical products without having been designated for any of the orders when the package was created and/or at least one literature pack optionally including patient specific information. The order consolidation station is further configured to combine automatically the received bottle and/or package and/or literature pack into a container to be sent to a recipient including, for example, mail order pharmacies, wholesalers and/or central fill dealers for subsequent distribution or sale including retailer distribution or sale. The bottle is specifically designated for the order, and the order generally includes at least one prescription for the package.
Abstract:
A micro-electrical mechanical system (MEMS) mirror assembly including an array of micro-mirrors formed on a substrate and having springs on one side and which angularly tilt between ON and OFF states in response to an electrostatic force generated by a voltage applied to an electrode located on the substrate. At least one, but preferably two springs in the form of two thin strips of metal attach to post(s) at the side edge of the mirror and act as springs which provide a restoring force when the mirror is tilted between an OFF state which occurs when the mirror is flat relative to the substrate with no voltage applied, and in the ON state when the mirror is tilted when a voltage is applied.
Abstract:
The present invention relates to a printed substrate comprising a substrate and a printing ink and is characterized in that at least one side of the substrate has a surface with such porosity that the Gurley-Hill air permeability value of the substrate is above 7000 s/100 ml, and it comprises an printing ink formulated as heat-set offset printing ink with reduced tack comprising at least one pigment and a mixture of at least two solvents boiling in the range of from 200° C. to 270° C.
Abstract:
A curled transistor comprises a coiled semiconductor substrate having a plurality of concentrically curled layers. Source and drain regions are configured on a portion of the coiled semiconductor substrate, and a gate dielectric is positioned between the source and drain regions. A first set of metallic contacts electrically couple to the source region on the coiled semiconductor substrate and a second set of metallic contacts electrically couple to the drain region on the coiled semiconductor substrate.
Abstract:
An improved dielectric suitable for use in electronic and micro-electromechanical (MEMS) components. The dielectric includes silicon nitride having a percentage of Si:H bonds greater than a percentage of N:H bonds, in order to reduce the level of charge trapping of the silicon nitride.
Abstract:
A system and method for providing seamless communication with threads executing on an embedded computer. Using a DAT system, a programmer can test the communication interfaces of a thread via either a scripting program, any COM-compliant program, or a graphical test utility. The DAT system automatically formats a block of data that is transmitted between the embedded computer and a host computer and accounts for machine specific enumeration sizes, machine specific pointer sizes, machine specific structure alignment boundaries, machine specific integer sizes, and machine specific byte ordering.
Abstract:
An elongate probe suitable for measuring one or more properties of a stream of fluid, the probe having an external planar sensing surface, which in use is exposed to the stream of fluid, at a longitudinal end thereof and comprising a plurality of sensors at the planar external sensing surface.
Abstract:
A mounting bracket and structural bridging fastener comprises an angle mounting bracket attached to a stable base, the bracket comprising a substantially planar main body and a mounting plate oriented perpendicular to the main body, the mounting plate and main body being connected through a complex formation in the angle mounting bracket, a loaded subcomponent configured to be attached to the mounting bracket so that the attachment point of the loaded subcomponent is aligned directly with the main body, a fastener comprising a structural portion adapted to lie between and be rigidly fastened to the mounting plate and to the main body adjacent the complex formation, with the fastener further comprising a threaded portion adapted to connect the loaded subcomponent to the mounting plate. The threaded portion may be an extension of the structural portion adapted to receive a nut, or the threaded portion may be internal to the structural portion and adapted to receive a bolt. The mounting bracket and structural bridging fastener is particularly adapted to secure a vehicular steering column assembly to a vehicular cross-car instrument panel structure.
Abstract:
A coiled bio-medical device has a base layer coiled to form a plurality of concentric cylinders. The base layer comprises an inner surface. The coiled bio-medical includes a bio-sensor arranged on the inner surface of the base layer. The bio-sensor is adapted to collect bio-medical data from an organism. A transmitter is arranged on the inner surface of the base layer and is adapted to transmit the collected bio-medical data.
Abstract:
Improved nanocoils, systems and methods for fabricating nanocoils. Embodiments enable wet etching techniques for releasing coiling arm structures and forming nanocoils. A method for fabricating nanocoils includes providing a silicon-on-insulator (SOI) wafer in which SOI wafer includes a buried oxide layer, patterning one or more devices onto a silicon device layer on top of the buried oxide layer, depositing a tensile stressed layer on the silicon device layer so that stressed layer and silicon device layer form a stressed coiling bi-layer, patterning a coiling arm structure on the stressed coiling bi-layer, depositing a metal encapsulation layer on the stressed coiling bi-layer, and releasing the coiling arm structure so that coiling arm coils to form nanocoil. A system for fabricating nanocoils includes a substrate, a coiling arm structure including, a buried oxide layer deposited on the substrate, a stressed coiling bi-layer attached to the buried oxide layer including a silicon device layer that includes one or more devices defined thereon and a stressed nitride layer that provides a tensile coiling stress, and a metal encapsulation layer that protects stressed nitride layer from hydrofluoric (HF) acid used to release the coiling arm structure from the substrate during the wet etch technique so that coiling arm structure coils into nanocoil when released. Improved nanocoils may be fabricated according to these and other methods and systems.