摘要:
In a global shared memory (GSM) environment, an initiating task at a first node with a host fabric interface (HFI) uses epochs to provide reliability of transmission of packets via a network fabric to a target task. The HFI generates a packet for the initiating task addressed to the target task, and automatically inserts a current epoch of the initiating task into the packet. A copy of the current epoch is maintained by the target task, which accepts for processing only packets having the correct epoch, unless the packet is tagged for guaranteed-once delivery. When a packet delivery is accepted, the target task sends a notification to the initiating task. If the initiating task does not receive the notification of delivery for the issued packet, the initiating task updates the epoch at both the target node and the initiating node and re-transmits the packet.
摘要:
A data processing system has a processor, a memory, and an instruction set architecture (ISA) that includes: (1) an asynchronous memory mover (AMM) store (ST) instruction initiates an asynchronous memory move operation that moves data from a first memory location having a first real address to a second memory location having a second real address by: (a) first performing a move of the data in virtual address space utilizing a source effective address a destination effective address; and (b) when the move is completed, completing a physical move of the data to the second memory location, independent of the processor. The ISA further provides (2) an AMM terminate ST instruction for stopping an ongoing AMM operation before completion of the AMM operation, and (3) a LD CMP instruction for checking a status of an AMM operation.
摘要:
A data processing system has an asynchronous memory mover, which includes multiple sets of registers for storing addressing and control parameters utilized to generate one or more asynchronous memory move (AMM) operations. The memory mover detects a receipt of a first set of parameters in a first set of registers from the processor. The processor forwards the parameters after the processor initiates a data move in virtual address space, utilizing a source effective address and a destination effective address. The memory mover responds to receiving the first set of parameters by generating and launching a first asynchronous memory move (AMM) operation. When the memory mover receives a second set of parameters in a second set of registers before the first AMM operation completes, the memory mover generates and launches a second AMM operation concurrently with the first AMM operation if no address conflicts exist.
摘要:
While an AMM operation is ongoing, a prefetch request for data from the source effective address or the destination effective address triggers a cache injection by the AMM mover (or memory controller) of relevant data from the stream of data being moved in the physical memory. The memory controller forwards the first prefetched line to the prefetch engine and L1 cache. The memory controller also forwards the next cache lines in the sequence of data to the L2 cache and a subsequent set of cache lines to the L3 cache. The memory controller then forwards the remaining data to the destination memory location. Quick access to prefetch data is enabled by buffering the stream of data in the upper caches rather than placing all the moved data within the memory. Also, the memory controller does not overrun the upper caches, by placing moved data into only a subset of the available cache lines of the upper level cache.
摘要:
A method of operating a data processing system includes each of multiple tasks within a parallel job executing on multiple nodes of the data processing system issuing a respective system call to request reservation, without allocation of backing storage in physical memory, of a global address space defined by a range of effective addresses as global shared memory accessible to all of the multiple tasks within the parallel job. At least two of the tasks within the parallel job allocate global address spaces including a same effective address.
摘要:
Disclosed are a method, information processing system, and computer readable medium for managing interrupts. The method includes placing at least one physical processor of an information processing system in a simultaneous multi-threading mode. At least a first logical processor and a second logical processor associated with the at least one physical processor are partitioned. The first logical processor is assigned to manage interrupts and the second logical processor is assigned to dispatch runnable user threads.
摘要:
A data processing system is programmed to provide a method for enabling user-level one-to-all message/messaging (OTAM) broadcast within a distributed parallel computing environment in which multiple threads of a single job execute on different processing nodes across a network. The method comprises: generating one or more messages for transmission to at least one other processing node accessible via a network, where the messages are generated by/for a first thread executing at the data processing system (first processing node) and the other processing node executes one or more second threads of a same parallel job as the first thread. An OTAM broadcast is transmitting via a host fabric interface (HFI) of the data processing system as a one-to-all broadcast on the network, whereby the messages are transmitted to a cluster of processing nodes across the network that execute threads of the same parallel job as the first thread.
摘要:
A data processing system has an asynchronous memory mover, which includes multiple sets of registers for storing addressing and control parameters utilized to generate one or more asynchronous memory move (AMM) operations. The memory mover detects a receipt of a first set of parameters in a first set of registers from the processor. The processor forwards the parameters after the processor initiates a data move in virtual address space, utilizing a source effective address and a destination effective address. The memory mover responds to receiving the first set of parameters by generating and launching a first asynchronous memory move (AMM) operation. When the memory mover receives a second set of parameters in a second set of registers before the first AMM operation completes, the memory mover generates and launches a second AMM operation concurrently with the first AMM operation if no address conflicts exist.
摘要:
A data processing system enables global shared memory (GSM) operations across multiple nodes with a distributed EA-to-RA mapping of physical memory. Each node has a host fabric interface (HFI), which includes HFI windows that are assigned to at most one locally-executing task of a parallel job. The tasks perform parallel job execution, but map only a portion of the effective addresses (EAs) of the global address space to the local, real memory of the task's respective node. The HFI window tags all outgoing GSM operations (of the local task) with the job ID, and embeds the target node and HFI window IDs of the node at which the EA is memory mapped. The HFI window also enables processing of received GSM operations with valid EAs that are homed to the local real memory of the receiving node, while preventing processing of other received operations without a valid EA-to-RA local mapping.
摘要:
Disclosed are a method of and system for multiple party communications in a processing system including multiple processing subsystems. Each of the processing subsystems includes a central processing unit and one or more network adapters for connecting said each processing subsystem to the other processing subsystems. A multitude of nodes are established or created, and each of these nodes is associated with one of the processing subsystems. A first aspect of the invention involves pipelined communication using RDMA among three nodes, where the first node breaks up a large communication into multiple parts and sends these parts one after the other to the second node using RDMA, and the second node in turn absorbs and forwards each of these parts to a third node before all parts of the communication arrive from the first node.