Abstract:
A system and method to automate data acquisition in a wireless telemetry network optimizes data acquisition to best match a target data set that the user desires given the performance limitations of the telemetry network. The user defines the target data set by providing inputs regarding a target quality of the target data set relative to a data set that has been produced and stored by a communication node in the network. The performance limitations of the network are defined in a system operating envelope. A data acquisition cycle is then automatically initiated and propagated in the network to acquire an actual data set that is an optimal match for the user's target given the system operating envelope.
Abstract:
A system and method to automate data acquisition in a wireless telemetry network optimizes data acquisition to best match a target data set that the user desires given the performance limitations of the telemetry network. The user defines the target data set by providing inputs regarding a target quality of the target data set relative to a data set that has been produced and stored by a communication node in the network. The performance limitations of the network are defined in a system operating envelope. A data acquisition cycle is then automatically initiated and propagated in the network to acquire an actual data set that is an optimal match for the user's target given the system operating envelope.
Abstract:
A network management system for a wireless communications network adaptively selects wireless modems to use in communicating messages between a control system and downhole equipment. The wireless modems are selected based on a monitored signal to noise ratio. The network management system may be centralized within the network or within a surface control system or can be decentralized so that a plurality of the wireless modems can adaptively determine routing in the network. The network management systems can be used in conjunction with a backbone network architecture to achieve further efficiencies in network throughput.
Abstract:
An acoustic communications network includes acoustic modems that exchange messages on an acoustic communications medium, such as tubing deployed in a wellbore. The acoustic communications medium is characterized by an acoustic transfer function having a plurality of passbands and a plurality of stopbands. The messages are communicated by encoding the message into a plurality of symbols representing the message and distributing the plurality of symbols across a bandwidth of a wideband acoustic signal that spans at least one passband and at least one stopband of the acoustic transfer function.
Abstract:
A technique facilitates communication in a subsea well application. The technique involves deployment of a blowout preventer subsea control and telemetry system to a subsea location proximate a wellbore. The blowout preventer subsea control and telemetry system is coupled to both a blowout preventer system and a wireless telemetry system. The wireless telemetry system has a plurality of repeaters deployed along the wellbore. The blowout preventer subsea control and telemetry system is used both to collect data from the wireless telemetry system and to control operation of the blowout preventer system. For example, the blowout preventer subsea control and telemetry system may receive control signals from a surface system and also relay data to the surface system through a common communication line.
Abstract:
The present disclosure describes methods and systems that can be used for controlling and coordinating the transmission of electromagnetic telemetry signals from and/or to a plurality of downhole tools to minimize or reduce electromagnetic interference between the transmissions. Signal coordination control is also disclosed that allows for duplex bidirectional communication of transmissions of electromagnetic telemetry signals such that electromagnetic interference between the transmissions is minimized or reduced.
Abstract:
An acoustic network is located in a formation traversed by a borehole having a pipe contained therein. The acoustic network includes a backbone network having a number of backbone modems engaging the pipe and acoustically communicating along the pipe using a first modulation technique. A number of end node modems acoustically communicate using a second modulation technique orthogonal to the first modulation technique. At least one of the backbone modems is a bridge hub modem that is coupled to both the backbone network and an end node modem and communicates with the backbone network using the first modulation technique and with the end node modem using the second modulation technique. The end node modems may have a hibernation mode defined by low energy usage with no transmission or receipt of data, and a transmission mode defined by transmission of data by the end node modem.
Abstract:
A system and method to automate data acquisition in a wireless telemetry network optimizes data acquisition to best match a target data set that the user desires given the performance limitations of the telemetry network. The user defines the target data set by providing inputs regarding a target quality of the target data set relative to a data set that has been produced and stored by a communication node in the network. The performance limitations of the network are defined in a system operating envelope. A data acquisition cycle is then automatically initiated and propagated in the network to acquire an actual data set that is an optimal match for the user's target given the system operating envelope.
Abstract:
A system and method to automate data acquisition in a wireless telemetry network optimizes data acquisition to best match a target data set that the user desires given the performance limitations of the telemetry network. The user defines the target data set by providing inputs regarding a target quality of the target data set relative to a data set that has been produced and stored by a communication node in the network. The performance limitations of the network are defined in a system operating envelope. A data acquisition cycle is then automatically initiated and propagated in the network to acquire an actual data set that is an optimal match for the user's target given the system operating envelope.
Abstract:
A method for improving a quality of data received from a downhole tool in a wellbore includes receiving a first block of data from a downhole tool in a wellbore. The first block of data represents a first measurement captured by the downhole tool during a first period of time. At least a portion of a bit budget for a second block of data is allocated to the first block of data to produce an updated first block of data. The method also includes receiving the second block of data from the downhole tool in the wellbore. The second block of data represents a second measurement captured by the downhole tool during a second period of time.