Abstract:
A method of analyzing a subterranean formation may include collecting a plurality of tool responses from different tools and generating a respective theoretical equation relating tool responses for each of the tools to properties of the subterranean formation. The method may also include generating a database having the tool responses stored therein based upon each respective theoretical equation and generating a non-linear mapping function relating at least one of the tool responses to at least one property of the subterranean formation. The method may also include estimating a value for the at least one property based upon the non-linear mapping function.
Abstract:
A method for determining a wettability of a subterranean formation (or formation core) includes either deploying a nuclear magnetic resonance (NMR) logging tool in a subterranean wellbore or deploying a formation core sample in a laboratory based NMR tool. NMR measurements of the formation (or formation core) are obtained and used to compute the wettability. The NMR measurements are processed to generate a two dimensional diffusion relaxation map (a D/T2 map) which is in turn processed to compute the wettability.
Abstract:
A method for generating a model of a formation property includes acquiring a formation property measurement. A petrophysical quantity is inverted from the formation property measurement. A model is generated based on the inverted petrophysical quantity.
Abstract:
The presence of hydrocarbons in a subsurface formation fluid may be inferred from a determined salt concentration. A sodium nuclear magnetic resonance (NMR) measurement of a subsurface formation is obtained and a salt concentration of the fluid in the subsurface formation is determined from the sodium NMR measurement. Various operations may be performed using the determined salt concentration such as tracking injected water, monitoring flood fronts, improving reserves estimation, and designing enhanced oil recovery. A sodium index may be determined and used in conjunction with one or more other logs to determine a saturation of the subsurface formation. The one or more other logs may include a resistivity log, a dielectric log, a capture cross section (sigma) log, and a proton NMR log. Differentiation between bound water and free water can also be achieved using the sodium nuclear magnetic resonance measurement.
Abstract:
A method for estimation of water properties and hydrocarbon properties in a subsurface formation includes acquiring a plurality of well log measurements from the subsurface formation. The water properties and the hydrocarbon properties are parameterized with respect to a selected set of well log measurements. A simultaneous or sequential inversion is performed to estimate the water properties and the hydrocarbon properties.
Abstract:
A method of interpreting petrophysical measurement data include arranging measurements of at least one physical property of formations into a matrix representing the measurements and selecting a range of number of unobserved factors or latent variables for factor analysis. Factor analysis is performed on the measurement matrix and comprises performing factorization of measurements matrix into a number of factorsand performing rotation of the factorization results. Whether the factor loadings for each factor have achieved a “simple structure” is determined and either each of the selected number of factors is associated with a physical parameter of the formations, or one is added to the number of factors and factor analysis and rotation are repeated until factor loadings of all factors have achieved “simple structure” such that the each of the number of factors is associated with a physical property of the formations.
Abstract:
The presence of hydrocarbons in a subsurface formation fluid may be inferred from a determined salt concentration. A sodium nuclear magnetic resonance (NMR) measurement of a subsurface formation is obtained and a salt concentration of the fluid in the subsurface formation is determined from the sodium NMR measurement. Various operations may be performed using the determined salt concentration such as tracking injected water, monitoring flood fronts, improving reserves estimation, and designing enhanced oil recovery. A sodium index may be determined and used in conjunction with one or more other logs to determine a saturation of the subsurface formation. The one or more other logs may include a resistivity log, a dielectric log, a capture cross section (sigma) log, and a proton NMR log. Differentiation between bound water and free water can also be achieved using the sodium nuclear magnetic resonance measurement.