Abstract:
A method for performing a field operation in a field includes obtaining subterranean field models that are generated based on measured data of a portion of the field. The subterranean field models include statistically derived data for a remainder portion of the field where the measured data is not available. Using a constraint optimization algorithm, weighting factors are determined that represent contributions of the subterranean field models to a combined model. The weighting factors are determined based on a statistical constraint defined by a statistical distribution of the subterranean field models and based on an optimization constraint such that a difference between a modeled value of the field and a pre-determined target value is less than a pre-determined threshold. The combined model is generated from the subterranean field model based on the weighting factors A field operation is performed based on the combined model.
Abstract:
Methods may include creating a fracture set from a collection of intersecting fractures in a borehole image log recorded within a subterranean formation; classifying the fracture set into groups of fully and partially intersecting fractures; calculating one or more of the elongation ratio and the rotation angle of the partially intersecting fractures; determining a probability of full intersection of fractures from the fracture set; and determining a fracture size or a parametric distribution of fracture sizes from the fracture set using the calculated one or more of the elongation ratio and the rotation angle and the determined probability of full intersection of formation fractures within the borehole
Abstract:
A method for estimating a value of a kerogen property in a subsurface formation where the value of the kerogen property is unknown. The method includes: measuring spectral intensity values over an infrared (IR) spectral range for a selected sample from the subsurface formation; determining a range of values representing the measured spectral intensity values corresponding to a vibrational mode attributable to kerogen in the selected sample, the range of values including values representing uncertainty in the measured spectral intensity over the portion of the spectral range; and inputting values from the range of values into a stochastic or simple regression model to determine an estimated value of the kerogen property in the selected sample.
Abstract:
Apparatus and methods for controlling equipment to recover hydrocarbons from a reservoir including constructing a collection of reservoir models wherein each model represents a realization of the reservoir and comprises a subterranean formation measurement, estimating the measurement for the model collection, and controlling a device wherein the controlling comprises the measurement estimate wherein the constructing, estimating, and/or controlling includes a rolling flexible approach and/or a nearest neighbor approach.
Abstract:
Apparatus and methods for hydrocarbon reservoir characterization and recovery including collecting geological data relating to a subteranean formation, forming initial parameters using the data, performing a pricipal component analysis of the parameters to create a model, and performing history matching using the model. In some embodiments, the principal component analysis is linear principal component analysis or kernal principal component analysis.
Abstract:
Apparatus and methods for controlling equipment to recover hydrocarbons from a reservoir including constructing a collection of reservoir models wherein each model represents a realization of the reservoir and comprises a subterranean formation measurement, estimating the measurement for the model collection, and controlling a device wherein the controlling comprises the measurement estimate wherein the constructing, estimating, and/or controlling includes a rolling flexible approach and/or a nearest neighbor approach.