Abstract:
An operating assembly for a small vehicle including a bicycle is basically provided with a base member, an operating member, a handlebar fixing structure and a handlebar spacer. The base member includes a support. The operating member is movably coupled to the base member. The handlebar fixing structure is coupled to base member. The handlebar fixing structure defines a handlebar receiving area. The support is spaced from the handlebar receiving area of the handlebar fixing structure in a parallel direction parallel to a handlebar axis defined by the handlebar receiving area. The handlebar spacer is disposed between a handlebar and one of the support and the handlebar fixing structure in a mounted state where the operating device is mounted to the handlebar.
Abstract:
A battery apparatus comprises a bicycle crank axle having a first end, a second end, and a hollow portion. The first end of the bicycle crank axle is configured to attach to a first bicycle crank arm, the second end of the bicycle crank axle is configured to attach to a second bicycle crank arm, and a power source is disposed within the hollow portion. The power source is configured to provide operating power to an electrical component disposed in the first bicycle crank arm, and the power source is configured to provide operating power to an electrical component disposed in the second bicycle crank arm. The hollow portion opens through the first end of the bicycle crank axle so that the power source is detachable through the first end of the crank axle.
Abstract:
An operating switch device for a human-powered vehicle comprises an assist operating switch and a coupling structure. The assist operating switch is configured to receive a user operation input to operate an assist driving unit configured to assist a human power. The coupling structure is configured to detachably couple the assist operating switch to a base member of an operating device configured to be mounted to a handlebar. The base member includes a base body including a grip portion provided between a coupling end configured to be coupled to the handlebar and a free end opposite to the coupling end.
Abstract:
A bicycle pedaling force detector is basically provided with that basically includes a first sensor circuit, a wireless communicator and a first electrical connection member. The first sensor circuit is coupled to a first housing that is configured to be mounted to a crank assembly. The wireless communicator is coupled to a second housing that is configured to be detachably mounted to a crank assembly. The second housing is a separate member from the first housing. The first electrical connection member is configured to electrically connect the wireless communicator and the first sensor circuit.
Abstract:
An electric bicycle component is basically provided that is capable of realizing finer control of the transmission device according to the riding environment. The electric bicycle component includes a control unit that is mounted to a bicycle. The control unit includes a controller and an acceleration detection unit. The acceleration detection unit includes programmed to detect an acceleration of the bicycle. The controller programmed to select one of a first to a third shifting conditions based on the acceleration detected by the acceleration detection unit, and controls an actuator of the transmission device based on the selected shifting condition.
Abstract:
A crank angle indicating system is provided for a pedaling device. The crank angle indicating system may include a crank angle detector configured to detect a crank angle of a crankshaft of a pedaling device, and an indication device configured to output at least one of an aural and a haptic indicator when a predetermined crank angle is reached, allowing a cyclist to time the application or release of force to the pedals accordingly.
Abstract:
A crank angle indicating system is provided for a pedaling device. The crank angle indicating system may include a crank angle detector configured to detect a crank angle of a crankshaft of a pedaling device, and an indication device configured to output at least one of an aural and a haptic indicator when a predetermined crank angle is reached, allowing a cyclist to time the application or release of force to the pedals accordingly.
Abstract:
A bicycle derailleur comprises a unit mounting portion, a battery mounting portion, a wireless communicator, an electrical connector, and a battery. The wireless communicator is detachably disposed at the unit mounting portion. The electrical connector receiving portion is configured to receive a connector. The battery is configured to be disposed at the battery mounting portion.
Abstract:
A control apparatus for a human-powered vehicle comprises a first controller. The first controller is configured to establish, in response to a user input, a wireless communication channel between a first wireless communicator of a first communication device and a second wireless communicator of a second communication device via a wired communication channel which is established between the first communication device and the second communication device through an electric cable and a first communication port configured to be connected to the electric cable.
Abstract:
An operating device for a human-powered vehicle comprises a base member, an informing unit, and an operating member. The base member is configured to be mounted to a handlebar. The informing unit is configured to inform a user of first information relating to an assist driving unit configured to assist a human power. The operating member is movably coupled to the base member to control a component different from the assist driving unit.