Abstract:
A secondary battery includes: a cathode; an anode; and an electrolyte layer containing a nonaqueous electrolytic solution and a polymer compound, wherein the polymer compound contains a block copolymer, and the block copolymer contains vinylidene fluoride, hexafluoro propylene, and one or more of monomethyl maleate, trifluoroethylene, and chlorotrifluoroethylene as polymerization units.
Abstract:
A secondary battery includes: a cathode; an anode; and non-aqueous electrolytic solution including a cyclic ether compound that includes a skeleton and one or more substituent groups introduced into the skeleton. The skeleton includes one or more four-or-more-membered oxygen-containing rings. The one or more substituent groups each are a monovalent group represented by Formula (1). —X—O—R (1) (X is one of a divalent chain saturated hydrocarbon group, a halide group thereof, and nothing. R is one of a monovalent chain saturated hydrocarbon group, etc. At least one of one or more Rs includes one or more of the monovalent chain unsaturated hydrocarbon group, the monovalent cyclic unsaturated hydrocarbon group, the monovalent oxygen-containing cyclic unsaturated hydrocarbon group, the halide group thereof, and the monovalent group obtained by bonding two or more thereof, and includes a carbon-carbon multiple bond (one of —C═C— and —C≡C—) bonded to an ether bond (—O—).)
Abstract:
A secondary battery includes a cathode, an anode, and an electrolyte layer including non-aqueous electrolytic solution and a polymer compound. The polymer compound includes a graft copolymer. The graft copolymer includes a block copolymer as a main chain, and includes one or both of a homopolymer and a copolymer as one or more side chains. The block copolymer includes, as polymerization units, vinylidene fluoride and hexafluoropropylene. The homopolymer includes, as a polymerization unit, one selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid. The copolymer includes, as polymerization units, two or more selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid.
Abstract:
Secondary batteries capable of improving cycle characteristics are provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. A separator provided between the cathode and the anode is impregnated with the electrolytic solution. The electrolytic solution contains a solvent and an electrolyte salt. The solvent contains a cyclic compound having a disulfonic acid anhydride group (—S(═O)2—O—S(═O)2—) and at least one of a nitrile compound. Compared to a case that the solvent does not contain both the cyclic compound having the disulfonic acid anhydride group and succinonitrile or a case that that the solvent contains at least one thereof, chemical stability of the electrolytic solution is improved. Thus, even if charge and discharge are repeated, electrolytic solution decomposition is inhibited.
Abstract:
A secondary battery includes: a cathode; an anode; and an electrolytic solution, in which an open-circuit voltage under a fully-charged state per pair of the cathode and the anode is about 4.3 V or over, and the electrolytic solution includes an unsaturated cyclic ester carbonate represented by an expression (1): where X is a divalent group in which m-number of >C═CR1R2 and n-number of >CR3R4 are bonded in any order, R1 to R4 each are a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, or a monovalent halogenated oxygen-containing hydrocarbon group, any two or more of R1 to R4 may be bonded to one another, and m and n satisfy m≧1 and n≧0, respectively.
Abstract:
A secondary battery includes: a cathode; an anode; and a gel electrolyte. The gel electrolyte includes an electrolytic solution and a polymer compound. The electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1), where X is a divalent group in which m number of >C═CR1-R1 and n number of >CR3R4 are bonded in any order; each of R1 to R4 is one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group; any two or more of the R1 to the R4 are allowed to be bonded to one another; and m and n satisfy m≧1 and n≧0.
Abstract:
A secondary battery capable of improving cycle characteristics, conservation characteristics, and load characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. A separator provided between the cathode and the anode is impregnated with an electrolytic solution. The electrolytic solution includes one or more of a dicarbonic ester compound, a dicarboxylic compound, a disulfonic compound, a monofluoro lithium phosphate, and difluoro lithium phosphate and one or more of fluorinated lithium phosphate, fluorinated lithium borate, and imide lithium.
Abstract:
A secondary battery includes a cathode, an anode, and non-aqueous electrolytic solution. The non-aqueous electrolytic solution includes a boron compound. The boron compound includes six or more boron (B) atoms, and includes an octavalent boron-hydrogen-containing structure represented by Formula (1), a dodecavalent boron-carbon-containing structure represented by Formula (2), or both.
Abstract:
A secondary battery capable of improving cycle characteristics, conservation characteristics, and load characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. A separator provided between the cathode and the anode is impregnated with an electrolytic solution. The electrolytic solution includes one or more of a dicarbonic ester compound, a dicarboxylic compound, a disulfonic compound, a monofluoro lithium phosphate, and difluoro lithium phosphate and one or more of fluorinated lithium phosphate, fluorinated lithium borate, and imide lithium.
Abstract:
A nonaqueous electrolyte battery includes: a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the positive electrode contains, as a positive electrode active material, a positive electrode material having a surface composition represented by the following formula (I); the nonaqueous electrolyte contains a halogenated carbonate represented by any of the following formulae (1) to (2) and an alkylbenzene represented by the following formula (3); a content of the halogenated carbonate is 0.1% by mass or more and not more than 50% by mass relative to the nonaqueous electrolyte; and a content of the alkylbenzene is 0.1% by mass or more and not more than 5% by mass relative to the nonaqueous electrolyte