Abstract:
A Hall sensor compensation circuit includes an input node configured for receiving a bias signal for a Hall sensor. A bias node provides to the Hall sensor a compensated bias signal. A compensation network coupled between the input node and the bias node has a gain inversely proportional to Hall mobility, μn′, wherein the Hall sensing signal is temperature-compensated.
Abstract:
An integrated sensor device including a first die, housing a sensor element to detect a quantity external to the sensor device and transduce the external quantity into an electrical sensing signal; a second die mechanically coupled to the first die so that the first and second dies are stacked on one another along one and the same axis; and at least one heater of a resistive type integrated in the first die and/or in the second die, having a first conduction terminal and a second conduction terminal configured to couple respective first and second conduction terminals of a signal generator for causing an electric current to flow, in use, between the first and second conduction terminals of the heater and generate heat by the Joule effect. It is possible to carry out calibration in temperature of the sensor element.
Abstract:
A circuit includes a first transistor having a control terminal and a current path between first and second current path terminals. A second transistor has a control terminal and a current path between first and second current path terminals. The first current path terminal of the first transistor is coupled to the first current path terminal of the second transistor at an intermediate point. A first current buffer has an input and an output. The input of the first current buffer is coupled to the second current path terminal of the first transistor. A second current buffer has an input and an output, the input of the second current buffer being coupled to the second current path terminal of the second transistor. A summation node is coupled to the outputs of the first and second current buffer.
Abstract:
A current measurement circuit, for wireless charging systems, for instance, comprises a differential input configured to have applied an input voltage sensed across a shunt resistor traversed by a current to be measured, a voltage reversal switch arrangement selectively switchable to reverse the polarity of the input voltage as applied between a first and a second voltage sensing nodes as well as a first and a second current flow line between the voltage sensing nodes and ground. A difference resistor intermediate the two current flow lines is traversed by a current which is a function of the input voltage as applied to the first and second sensing nodes via the voltage reversal switch arrangement. First and second current sensing nodes at the two current flow lines are coupled to a differential current output via a current reversal switch arrangement selectively switchable to reverse the output current polarity.
Abstract:
A current measurement circuit, for wireless charging systems, for instance, comprises a differential input configured to have applied an input voltage sensed across a shunt resistor traversed by a current to be measured, a voltage reversal switch arrangement selectively switchable to reverse the polarity of the input voltage as applied between a first and a second voltage sensing nodes as well as a first and a second current flow line between the voltage sensing nodes and ground. A difference resistor intermediate the two current flow lines is traversed by a current which is a function of the input voltage as applied to the first and second sensing nodes via the voltage reversal switch arrangement. First and second current sensing nodes at the two current flow lines are coupled to a differential current output via a current reversal switch arrangement selectively switchable to reverse the output current polarity.
Abstract:
A compensation circuit receives a sensing signal from a Hall sensor and outputs a compensated Hall sensing signal. The compensation circuit has a gain that is inversely proportional to Hall sensor drift mobility. The compensated Hall sensing signal is temperature-compensated.
Abstract:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
Abstract:
A current measurement circuit, for wireless charging systems, for instance, comprises a differential input configured to have applied an input voltage sensed across a shunt resistor traversed by a current to be measured, a voltage reversal switch arrangement selectively switchable to reverse the polarity of the input voltage as applied between a first and a second voltage sensing nodes as well as a first and a second current flow line between the voltage sensing nodes and ground. A difference resistor intermediate the two current flow lines is traversed by a current which is a function of the input voltage as applied to the first and second sensing nodes via the voltage reversal switch arrangement. First and second current sensing nodes at the two current flow lines are coupled to a differential current output via a current reversal switch arrangement selectively switchable to reverse the output current polarity.
Abstract:
An embodiment voltage-current converter circuit comprises a first amplifier and a second amplifier having homologous first input nodes configured to receive a voltage signal therebetween as well as homologous second input nodes having a resistor coupled therebetween. First and second current mirror circuits are provided comprising first input transistors having their control terminal coupled to the output nodes of the amplifiers. First and second current sensing circuitry having first and second current output nodes are coupled to the current mirror output nodes of the current mirror circuits and configured to provide therebetween a current which is a function of the voltage signal between the homologous first input nodes of the amplifier.
Abstract:
An embodiment voltage-current converter circuit comprises a first amplifier and a second amplifier having homologous first input nodes configured to receive a voltage signal therebetween as well as homologous second input nodes having a resistor coupled therebetween. First and second current mirror circuits are provided comprising first input transistors having their control terminal coupled to the output nodes of the amplifiers. First and second current sensing circuitry having first and second current output nodes are coupled to the current mirror output nodes of the current mirror circuits and configured to provide therebetween a current which is a function of the voltage signal between the homologous first input nodes of the amplifier.