Abstract:
A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract translation:微型氧传感器利用氧气的顺磁特性提供快速的响应时间,低功耗,提高的精度和灵敏度以及优异的耐久性。 所公开的微型氧传感器在半导体衬底中形成的微通道内保持环境空气样品。 O 2分子响应于施加的磁场而分离,从而建立可测量的霍尔电压。 环境空气样品中存在的氧气可以从施加磁场变化的霍尔电压变化推导出来。 磁场可以由外部磁体或集成到微通道内的气体感测腔中的薄膜磁体施加。 差分传感器还包括含有非磁化控制样品的参考元件。 微型氧传感器适用于智能手机等消费类产品中的实时空气质量监控。
Abstract:
The present disclosure is directed to a gas sensor device that includes a plurality of gas sensors. Each of the gas sensors includes a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. Each of the SMO films is designed to be sensitive to a different gas concentration range. As a result, the gas sensor device is able to obtain accurate readings for a wide range of gas concentration levels. In addition, the gas sensors are selectively activated and deactivated based on a current gas concentration detected by the gas sensor device. Thus, the gas sensor device is able to conserve power as gas sensors are on when appropriate instead of being continuously on.
Abstract:
A blind opening is formed in a bottom surface of a semiconductor substrate to define a thin membrane suspended from a substrate frame. The thin membrane has a topside surface and a bottomside surface. A stress structure is mounted to one of the topside surface or bottomside surface of the thin membrane. The stress structure induces a bending of the thin membrane which defines a normal state for the thin membrane. Piezoresistors are supported by the thin membrane. In response to an applied pressure, the thin membrane is bent away from the normal state and a change in resistance of the piezoresistors is indicative of the applied pressure.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.
Abstract:
The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.
Abstract:
Sensors for air flow, temperature, pressure, and humidity are integrated onto a single semiconductor die within a miniaturized Venturi chamber to provide a microelectronic semiconductor-based environmental multi-sensor module that includes an air flow meter. One or more such multi-sensor modules can be used as building blocks in dedicated application-specific integrated circuits (ASICs) for use in environmental control appliances that rely on measurements of air flow. Furthermore, the sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. By integrating the Venturi chamber with accompanying environmental sensors, correction factors can be obtained and applied to compensate for temporal humidity fluctuations and spatial temperature variation using the Venturi apparatus.
Abstract:
A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed. Such a miniature integrated multi-sensor module that features low power consumption can be used in medical monitoring and mobile computing, including smart phone applications.