Abstract:
Data exchanges between an ultra-wide band communication module and a secure element are controlled such that the data exchanges pass through a near-field communication router. The near-field communication router controls routing of the data exchanges so that the data exchanges do not pass through a host circuit that is also coupled to the near-field communication router.
Abstract:
In an embodiment a method for dynamic power control of a power level transmitted by an antenna of a contactless reader is disclosed. The method may include supplying a power to the antenna and performing at least one power adjusting cycle for adjusting a power level during a contactless transaction with a transponder, each power adjusting cycle including modifying the power supplied to the antenna to a predetermined level of power, performing a first measuring of a loading effect on the antenna at the predetermined level of power and adjusting the power level according to the measured loading effect.
Abstract:
A device includes a first circuit that includes a near-field emission circuit, a second circuit, and a hardware connection linking the first circuit to the second circuit. The hardware connection is dedicated to a priority management between the first circuit and the second circuit. In addition, priority management information can be communicated between a near-field emission circuit and a second circuit. The communicating occurs between a dedicated hardware connection connecting the near-field emission circuit to the second circuit.
Abstract:
A circuit for a communication device and a method for switching a communication device are disclosed. In an embodiment, a method includes activating at least one first antenna and at least one second antenna of a near-field communication (NFC) device for switching the NFC device between first field detection phases and second card detection phases.
Abstract:
In an embodiment, an electronic device includes a first near field communication module, at least one second communication module, at least one portion of a volatile memory, at least one register, and at least one first circuit configured to activate the near field communication module, wherein the at least one second communication module is configured to power the at least one portion of the volatile memory, the at least one register and the at least one first circuit with a first supply voltage when the electronic device is in an on state and when the first near field communication module is in a standby mode.
Abstract:
A near-field communication circuit includes an oscillating circuit having a controllable capacitor. A control circuit is coupled to the oscillating circuit to control the controllable capacitor. A battery is coupled to the control circuit to enable control when the near-field communication circuit is in a standby mode. The near-field communication circuit can be utilized by a mobile communication device.
Abstract:
In some embodiments, a contactless communication device includes an antenna, and a driving stage having a power supply terminal configured to receive a power supply voltage, where the driving stage is configured to deliver a current to the antenna. The device further includes a monitoring circuit configured to monitor the power transmitted by the antenna. The monitoring circuit is configured, in the presence of a request for a reduction in a current level of transmitted power, to reduce the power supply voltage of the driving stage down to a target value corresponding to a new level of the transmitted power less than the current level.
Abstract:
A system includes an antenna, and a contactless component for receiving and/or transmitting information via the antenna according to a contactless communications protocol. An inductive-capacitive network is connected between the antenna and the contactless component and includes a configurable filter for filtering electromagnetic interference. A processor modifies an impedance of the configurable filter for filtering electromagnetic interference to control frequency tuning of the antenna.
Abstract:
An electronic device includes an antenna, an irremovable component, a removable component, an impedance matching circuit, and a controller. The impedance matching circuit is arranged in a first configuration corresponding to the removable component connected to the irremovable component. The impedance matching circuit has a first capacitor, a second capacitor, and a third capacitor. The controller is configured to arrange the impedance matching circuit in a second configuration corresponding to the removable component being disconnected from the irremovable component.
Abstract:
An NFC component includes a first interface that can be used in reader mode and is configured to be connected to an antenna via an impedance matching external circuit. A second interface can be used in card mode and in reader mode and is configured to be connected to the antenna and to the first interface via the impedance matching external circuit. An internal module includes a first detection circuit configured to deliver a first detection signal that represents the phase antenna matching quality when the impedance matching external circuit and the antenna are indeed connected between the first interface and the second interface. The internal module is further configured to deliver a check signal from at least the first detection signal.