Abstract:
A charge pump circuit is coupled between a positive supply node and a ground node. The charge pump circuit operates in response to clock signals output from a clock generator to produce a negative voltage at a negative voltage output node. A soft-start circuit for the charge pump circuit includes a comparison circuit configured to compare a varying intermediate voltage sensed between a rising supply voltage and the negative voltage to a ramp voltage during a start-up period of the charge pump circuit. The clock generator is selectively enabled to generate the clock signals in response to the comparison to provide for pulse-skipping.
Abstract:
An electronic device may include a switching converter configured to convert an input voltage to an output voltage, and being selectively operable in a pulse skipping mode based upon a control signal. The switching converter may include a comparator having a first input configured to receive an error signal, a second input configured to receive a skipping mode reference signal, and an output configured to generate the control signal. A reference generator may be configured to generate the skipping mode reference signal as a function of a difference between the output voltage and the input voltage.
Abstract:
A drive circuit includes a first transistor coupled in series with a second transistor at a first intermediate node coupled to a load. An amplifier has an output driving a control terminal of the second transistor. The amplifier includes a first input coupled to a second intermediate node and a second input coupled to a reference voltage. A feedback circuit is coupled between the first intermediate node and the second intermediate node. A slope control circuit is coupled the second intermediate node. The slope control circuit injects a selected value of current into the second intermediate node, that current operating to control the output of the amplifier in setting a slope for change in voltage at the first intermediate node.
Abstract:
A low side driver includes a first transistor coupled in series with a second transistor at a low side voltage node for a load. A capacitance is configured to store a voltage and a voltage buffer circuit has an input coupled to receive the voltage stored by the capacitance and an output coupled to drive a control node of the second transistor with the stored voltage. A current source supplies current through a switch to the capacitance and the input of the voltage buffer circuit. The switch is configured to be actuated by an oscillating enable signal so as to cyclically source current from the current source to the capacitance and cause a stepped increase in the stored voltage which is applied by the buffer circuit to the control node of the second transistor.
Abstract:
A drive circuit includes a first transistor coupled in series with a second transistor at a first intermediate node coupled to a load. An amplifier has an output driving a control terminal of the second transistor. The amplifier includes a first input coupled to a second intermediate node and a second input coupled to a reference voltage. A feedback circuit is coupled between the first intermediate node and the second intermediate node. A slope control circuit is coupled the second intermediate node. The slope control circuit injects a selected value of current into the second intermediate node, that current operating to control the output of the amplifier in setting a slope for change in voltage at the first intermediate node.
Abstract:
A low side driver includes a first transistor coupled in series with a second transistor at a low side voltage node for a load. A capacitance is configured to store a voltage and a voltage buffer circuit has an input coupled to receive the voltage stored by the capacitance and an output coupled to drive a control node of the second transistor with the stored voltage. A current source supplies current through a switch to the capacitance and the input of the voltage buffer circuit. The switch is configured to be actuated by an oscillating enable signal so as to cyclically source current from the current source to the capacitance and cause a stepped increase in the stored voltage which is applied by the buffer circuit to the control node of the second transistor.
Abstract:
A low side driver includes a first transistor coupled in series with a second transistor at a low side voltage node for a load. A capacitance is configured to store a voltage and a voltage buffer circuit has an input coupled to receive the voltage stored by the capacitance and an output coupled to drive a control node of the second transistor with the stored voltage. A current source supplies current through a switch to the capacitance and the input of the voltage buffer circuit. The switch is configured to be actuated by an oscillating enable signal so as to cyclically source current from the current source to the capacitance and cause a stepped increase in the stored voltage which is applied by the buffer circuit to the control node of the second transistor.
Abstract:
A fully integrated ramp generator circuit includes a first current generator that sources current to first capacitor through a first transistor that is gate controlled by the complement of a periodic signal. The ramping voltage stored on the first capacitor is buffered to an output node as a ramp output signal. A second transistor couples the output node to the first current generator and is gate controlled by the periodic signal. The periodic signal is generated at the output of a flip-flop that receives an input clock signal and reset signal. The reset signal is generated by a comparator circuit operable to compare the voltage on a second capacitor to a reference. The second capacitor is charged by a second current source and discharged by a third transistor that is gate controlled by the periodic signal.
Abstract:
A low side driver includes a first transistor coupled in series with a second transistor at a low side voltage node for a load. A capacitance is configured to store a voltage and a voltage buffer circuit has an input coupled to receive the voltage stored by the capacitance and an output coupled to drive a control node of the second transistor with the stored voltage. A current source supplies current through a switch to the capacitance and the input of the voltage buffer circuit. The switch is configured to be actuated by an oscillating enable signal so as to cyclically source current from the current source to the capacitance and cause a stepped increase in the stored voltage which is applied by the buffer circuit to the control node of the second transistor.
Abstract:
An electronic device includes a current comparator to generate an output current based upon a difference between a current flowing in an output branch and a current flowing in an input branch. A pair of transistors is coupled to an output of the current comparator. A first amplifier has inputs coupled to the pair of transistors and to a reference voltage, the first amplifier being configured to subtract the reference voltage from a voltage across the pair of transistors and output a difference voltage. A second amplifier has inputs coupled to the difference voltage and to the reference voltage, the second amplifier being configured to subtract the difference voltage from the reference voltage and output a pulse skipping mode reference signal.