Abstract:
A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
Abstract:
A microelectromechanical gyroscope having a supporting structure; a mass capacitively coupled to the supporting structure and movable with a first degree of freedom and a second degree of freedom, in response to rotations of the supporting structure about an axis; driving components, for keeping the mass in oscillation according to the first degree of freedom; a read interface for detecting transduction signals indicating the capacitive coupling between the mass and the supporting structure; and capacitive compensation modules for modifying the capacitive coupling between the mass and the supporting structure. Calibration components detect systematic errors from the transduction signals and modify the capacitive compensation modules as a function of the transduction signals so as to attenuate the systematic errors.
Abstract:
A demodulator is provided for demodulating an amplitude-modulated input signal defined by a carrier signal having a carrier frequency modulated by a modulating signal, the demodulator including an amplifier stage having a gain and structured to receive the amplitude-modulated input signal, and a gain control stage coupled to the amplifier stage and configured to vary the gain of the amplifier stage according to the carrier frequency of the carrier signal.
Abstract:
A gyroscope includes a body, a driving mass, which is mobile according to a driving axis, and a sensing mass, which is driven by the driving mass and is mobile according to a sensing axis, in response to rotations of the body. A driving device forms a microelectromechanical control loop with the body and the driving mass and maintains the driving mass in oscillation with a driving frequency. The driving device comprises a frequency detector, which supplies a clock signal at the frequency of oscillation of the driving mass, and a synchronization stage, which applies a calibrated phase shift to the clock signal so as to compensate a phase shift caused by components of the loop that are set between the driving mass and the control node.
Abstract:
A microelectromechanical gyroscope having a microstructure that includes a first mass and a second mass, wherein the first mass is oscillatable according to a first axis and the second mass is constrained to the first mass so as to be drawn along by the first mass according to the first axis and to oscillate according to a second axis, in response to a rotation of the microstructure, a driving device coupled to the microstructure to maintain the first mass in oscillation at the driving frequency, and a reading device that detects displacements of the second mass according to the second axis. The gyroscope is provided with a self-test actuation system coupled to the second mass for applying an electrostatic force at the driving frequency so as to move the second mass according to the second axis.
Abstract:
A microelectromechanical gyroscope includes a body and a sensing mass, which is movable with a degree of freedom in response to rotations of the body about an axis. A self-test actuator is capacitively coupled to the sensing mass for supplying a self-test signal. The capacitive coupling causes, in response to the self-test signal, electrostatic forces that are able to move the sensing mass in accordance with the degree of freedom at an actuation frequency. A sensing device detects transduction signals indicating displacements of the sensing mass in accordance with the degree of freedom. The sensing device is configured for discriminating, in the transduction signals, spectral components that are correlated to the actuation frequency and indicate the movement of the sensing mass as a result of the self-test signal.
Abstract:
A microelectromechanical device includes a body, a movable mass, elastically connected to the body and movable in accordance with a degree of freedom, and a driving device, coupled to the movable mass and configured to maintain the movable mass in oscillation at a steady working frequency in a normal operating mode. The microelectromechanical device moreover includes a start-up device, which is activatable in a start-up operating mode and is configured to compare a current oscillation frequency of a first signal correlated to oscillation of the movable mass with a reference frequency, and for deciding, on the basis of the comparison between the current oscillation frequency and the reference frequency, whether to supply to the movable mass a forcing signal packet so as to transfer energy to the movable mass.
Abstract:
A microelectromechanical gyroscope includes a body and a sensing mass, which is movable with a degree of freedom in response to rotations of the body about an axis. A self-test actuator is capacitively coupled to the sensing mass for supplying a self-test signal. The capacitive coupling causes, in response to the self-test signal, electrostatic forces that are able to move the sensing mass in accordance with the degree of freedom at an actuation frequency. A sensing device detects transduction signals indicating displacements of the sensing mass in accordance with the degree of freedom. The sensing device is configured for discriminating, in the transduction signals, spectral components that are correlated to the actuation frequency and indicate the movement of the sensing mass as a result of the self-test signal.
Abstract:
A multi-axis gyroscope includes a microelectromechanical structure configured to rotate with respective angular velocities about respective reference axes, and including detection elements, which are sensitive in respective detection directions and generate respective detection quantities as a function of projections of the angular velocities in the detection directions. The gyroscope including a reading circuit that generates electrical output signals, each correlated to a respective one of the angular velocities, as a function of the detection quantities. The reading circuit includes a combination stage that combines electrically with respect to one another electrical quantities correlated to detection quantities generated by detection elements sensitive to detection directions different from one another, so as to take into account a non-zero angle of inclination of the detection directions with respect to the reference axes.