Abstract:
Provided is a display device. The display device includes a display panel including a common voltage generator generating an output voltage to be provided to the plurality of pixels. Each of the plurality of pixels includes a pixel electrode receiving a data voltage, a common electrode receiving the output voltage through common voltage lines, and a liquid crystal capacitor charged with a voltage difference between the data voltage and the output voltage. The common voltage generator compensates the output voltage based on a ratio of an internal resistance of the common voltage generator to a resistance component of the common electrode disposed on the display panel and outputs the compensated output voltage.
Abstract:
A display device includes: a display panel including gate lines, a data lines crossing the gate lines, and pixels connected to the data lines and the gate lines; a data driver configured to drive the data lines; a gate driver configured to drive the gate lines in synchronization with a vertical sync start signal; and a timing controller configured to control the data driver and the gate driver in response to an image signal and a control signal inputted thereto from an outside, where the timing controller outputs the vertical sync start signal to the gate driver, and changes a frequency of the vertical sync start signal when an image signal of a current frame is identical to an image signal shifted from an image signal of a previous frame in a first direction.
Abstract:
A method of driving a display panel, the method including outputting video data to a display panel during an N-th (N is a natural number) frame, outputting video data to the display panel during an (N+1)-th frame, comparing polarities of video data of the N-th frame and corresponding polarities of video data of the (N+1)-th frame, and controlling polarities of video data of an (N+2)-th frame, according to the result of the comparison.
Abstract:
A display device includes: a display panel including a gate line, a data line and a pixel connected to the gate line and the data line; a data driver connected to the data line; a gate driver connected to the gate line; a direct current-to-direct current (“DC-DC”) unit which transfers a gate-on voltage or a gate-off voltage to the gate driver; a signal controller which controls the data driver, the gate driver and the DC-DC unit; and a sensing unit, in which the DC-DC unit generates a power voltage based on a control signal of the signal controller, and the sensing unit includes a measuring unit which senses a sensing signal based on a power voltage signal applied to the data driver, and a reset signal generator which generates a reset signal based on the sensing signal.
Abstract:
A flexible circuit film including a first flexible film, a second flexible film facing the first flexible film, and a plurality of wirings arranged between the first flexible film and the second flexible film. The wirings have different widths and bend in different directions, and a guide film including a material more rigid than the first and second flexible films is arranged on ends of the first flexible film. The guide film includes a tear-preventing portion overlapping with a bending portion of a shortest one of the wirings while covering portions of an inner edge near inner corners of a U-shaped flexible circuit film.
Abstract:
In a method of operating a display device, it is determined whether an image represented by input image data is a single color image, it is determined whether the image represented by the input image data is a low gray image, compensated image data are generated by adding sub-pixel data corresponding to a color different from a color of the single color image to the input image data when the image represented by the input image data is the single color image and the low gray image, and an image is displayed based on the compensated image data.
Abstract:
A gate driver includes a precharge signal generating part configured to generate a precharge signal which varies based on a previous data signal corresponding to a previous gate line and a data signal corresponding to a gate line, and a signal adding part configured to add the precharge signal and a non-precharge signal to generate a gate signal.
Abstract:
A display device includes gate lines, data lines, pixels, a gate driver, a data driver, and a timing controller. The gate lines extend in a first direction. The data lines extend in a second direction crossing the first direction. Each of the pixels is connected to a corresponding gate line of the gate lines and a corresponding data line of the data lines. The gate driver is configured to drive the gate lines. The data driver is configured to drive each data line of the data lines in response to a corresponding data signal. The timing controller is configured to, in response to an image signal and a control signal, apply the corresponding data signals to the data driver and control the gate driver. Each corresponding data signal reflects a kickback compensation value corresponding to a distance between the gate driver and the corresponding data line in the first direction.
Abstract:
A control board in a display device includes terminals and a control circuit. The control circuit is configured to output a control signal an image signal through the terminals and to generate a drive voltage in response to a feedback signal, which is fed back to a second terminal of the terminals when a source voltage is applied to a first terminal of the terminals.