Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
An OLED device and a method of manufacturing the same, the OLED device including a substrate having a pixel area and a transmission area; a pixel circuit on the pixel area; a first electrode on the pixel area and being electrically connected to the pixel circuit; a first organic layer extending continuously on the pixel area and the transmission area and covering the first electrode; an emitting layer selectively on a portion of the first organic layer on the pixel area; a second organic layer extending continuously on the pixel and transmission areas and covering the emitting layer; and a third organic layer selectively on the transmission area, the third organic layer including a non-emitting material that has a different transmittance from that of the emitting layer; and a second electrode extending continuously on the pixel area and the transmission area and covering the second and third organic layers.
Abstract:
A display apparatus includes a transparent display device, a first polarizer on a first surface of the transparent display device, a first retarder between the first polarizer and the first surface of the transparent display device, a second polarizer on a second surface of the transparent display device opposite the first surface, and a conversion retarder between the second polarizer and the second surface of the transparent display device, the conversion retarder being configured to delay a wavelength of the external light within a range from a first phase to a second phase and to transmit the wavelength-delayed light therethrough when power is supplied to the conversion retarder.
Abstract:
Provided is an organic light-emitting display apparatus that includes a substrate; a first electrode on the substrate; an intermediate layer on the first electrode and including an organic emission layer; and a second electrode that includes a first layer including a dipole material, a second layer including a material having a work function of 3.6 eV or less, and a third layer including a conductive material, wherein the first to third layers are sequentially disposed on the intermediate layer.
Abstract:
An organic light emitting diode device includes an emission layer between first and second electrodes, a first auxiliary layer, and a second auxiliary layer. The first electrode includes a silver-magnesium alloy having a greater content of silver than magnesium. The first auxiliary layer is between the first electrode and emission layer, and includes an inorganic material. The second auxiliary layer is between the first electrode and first auxiliary layer, and includes a material having a work function of less than or equal to about 4.0 eV.
Abstract:
An organic light emitting diode (OLED) display is provided. An OLED display in accordance with an exemplary embodiment may include a substrate including a first subpixel, a second subpixel, and a third subpixel, a first electrode disposed on each of the first subpixel, the second subpixel, and the third subpixel, a second electrode facing the first electrode, a first common layer disposed on the first subpixel and the second subpixel, a first emission layer and a second emission layer disposed on the first common layer, a second common layer disposed on the third subpixel, and a third emission layer disposed on the second common layer. The first common layer may include a first doping layer and a second doping layer disposed on the first doping layer. Each of the doping layers may including a p-type dopant, and the second common layer may be formed as a single layer.
Abstract:
Disclosed is an organic light emitting diode device including an anode, a cathode, an emission layer between the anode and the cathode, and a buffer layer positioned between the emission layer and the anode. The buffer layer includes an oxide, fluoride, quinolate, or acetoacetate compound of an alkaline metal or an alkaline-earth metal, as well as a material having a work function of about 2.6 to about 4.5 eV. The buffer layer also has a thickness of about 30 Å to about 400 Å.