Abstract:
A camera module includes a lens barrel configured to be movable; a detection target disposed on one side of the lens barrel; an integrated coil and a sensing coil facing the detection target and disposed in a direction perpendicular to a direction of movement of the lens barrel; a driver configured to apply a driving signal to the integrated coil; and a position detector configured to detect a position of the lens barrel according to an inductance of the integrated coil and an inductance of the sensing coil, wherein a width of the integrated coil in the direction perpendicular to the direction of movement of the lens barrel and a width of the sensing coil in the direction perpendicular to the direction of movement of the lens barrel change in the direction of movement of the lens barrel.
Abstract:
An actuator for a camera module includes two or more detectable elements, the detectable elements are respectively disposed on a first and second surface of a lens barrel, an oscillating element including a first oscillation circuit unit that includes two or more oscillation circuits facing the first surface of the lens barrel, and a second oscillation circuit unit that includes two or more oscillation circuits facing the second surface of the lens barrel, and a determining device that calculates a position of the lens barrel in response to oscillation signals output from the oscillating element. The determining device is configured to calculate the position of the lens barrel based on determined frequencies of oscillation signals of the first oscillation circuit unit and the second oscillation circuit unit.
Abstract:
Embodiments of the invention provide a method and a circuit for generating a reference signal for controlling a peak current of a converter switch. According to at least one embodiment, a dead-zone generator configured to form a dead-zone in an input voltage signal divided from a primary-side supply voltage of an isolated converter, and a duty ratio calculator configured to calculate a duty ratio of energy transfer to a secondary side. The circuit further includes an operator configured to generate and output a reference signal for controlling the peak current of the converter switch from a dead-zone voltage signal having the dead-zone using the duty ratio of energy transfer calculated by the duty ratio calculator.
Abstract:
There is provided a light emitting diode driving apparatus charging and discharging a valley fill power by comparing a voltage level of rectified power with a preset reference voltage. The light emitting diode driving apparatus includes a rectifying unit rectifying input AC power, a charging and discharging unit comparing a voltage level of power rectified by the rectifying unit with a preset reference voltage to charge and discharge the rectified power depending on the comparison result, and a driving unit driving a light emitting diode depending on the power rectified by the rectifying unit and a voltage discharged from the charging and discharging unit.
Abstract:
There is provided a light emitting diode (LED) driving apparatus configured such that a waveform of current input to an LED follows a sine wave, the LED driving apparatus including, a switching unit switching an LED unit having a plurality of LEDs receiving rectified power and emitting light, a driving control unit controlling the switching of the switching unit according to a voltage level of the rectified power, a current limiting unit limiting current flowing in the LED unit, and an adjusting unit adjusting current limitation of the current limiting unit according to the voltage level of the rectified power.
Abstract:
A tiltless OIS circuit includes a first signal processing unit generating a first direction-position detection signal and a tilt detection signal based on a first direction-first sensing signal and a first direction-second sensing signal, a control unit generating a first direction position control signal, a tilt control signal, and a second direction position control signal, based on the first direction-position detection signal, the tilt detection signal, and a second direction sensing signal, respectively, a second signal processing unit generating a first direction-first position control signal and a first direction-second position control signal based on the first direction position control signal and the tilt control signal, and a driving unit generating a first direction-first driving signal, a first direction-second driving signal, and a second direction driving signal, based on the first direction-first position control signal, the first direction-second position control signal, and the second direction position control signal, respectively.
Abstract:
A position detecting device includes a first hall device and a second hall device; a subtractor to subtract a second hall voltage generated by the second hall device from a first hall voltage generated by the first hall device to generate a subtraction voltage; an adder to add the first hall voltage to the second hall voltage to generate an addition voltage; and a divider to calculate a ratio of the addition voltage to the subtraction voltage in accordance with a charging time of a capacitor using the addition voltage and a discharging time of the capacitor using the subtraction voltage.
Abstract:
A camera module includes a lens barrel, a driving coil disposed to face a target detection unit prepared on one side of the lens barrel, a driving device configured to provide a driving signal to the driving coil, and a position calculating unit including a first capacitor, configured to provide a ground for an alternating current (AC) signal to the driving coil, a second capacitor, connected to the driving coil to constitute oscillation circuit together with the driving coil, and a position calculating circuit configured to calculate a position of the lens barrel from a frequency of the oscillation circuit.
Abstract:
An actuator including two or more detection targets disposed on a surface and another surface of a lens barrel, respectively, an oscillating unit including a first oscillation circuit unit including two or more oscillation circuits disposed to face the surface and a second oscillation circuit unit including two or more oscillation circuits disposed to face the other surface to output oscillation signals, and a determining unit to calculate a position of the lens barrel from the oscillation signals output from the oscillating unit. A frequency range of an oscillation signal output from any one of the two or more oscillation circuits of the first oscillation circuit unit is different from that of an oscillation signal output from any one of the two or more oscillation circuits of the second oscillation circuit unit.
Abstract:
There is provided an integrated circuit controlling a power supply, the integrated circuit including: an HV pin obtaining startup power; a voltage dividing unit connected to the HV pin; and an input voltage detecting unit detecting an input voltage through voltage distribution by the voltage dividing unit. The integrated circuit may be capable of reducing manufacturing costs by omitting a separate voltage sensing pin.