Abstract:
Embodiments of the invention provide a method and a circuit for generating a reference signal for controlling a peak current of a converter switch. According to at least one embodiment, the circuit includes a squarer configured to squire an input voltage signal divided from a primary-side supply voltage of an isolated converter, and a duty ratio calculator configured to calculate a duty ratio of energy transfer to a secondary side. The circuit further includes an operator configured to generate and output a reference signal for controlling the peak current of the converter switch from a square signal of the input voltage signal using the duty ratio of energy transfer calculated by the duty ratio calculator.
Abstract:
There are provided a light emitting diode (LED) driving apparatus and an LED lighting apparatus, in which a common detection resistor detecting a current flowing in each LED is used. According to exemplary embodiments of the present disclosure, manufacturing costs and a circuit area may be reduced by commonly using a common detection resistor detecting a current flowing in each of the LEDs.
Abstract:
A gate driving circuit may include: a bias unit receiving an input signal having preset high and low signal levels, including a first N-MOSFET turned on in the case in which the input signal has the high level and a first P-MOSFET turned on in the case in which the input signal has the low level, and supplying bias powers by the turning-on of the first N-MOSFET and the first P-MOSFET; and an amplifying unit including a second N-MOSFET turned on by receiving the bias power supplied from the first N-MOSFET in the case in which the input signal has the high level and a second P-MOSFET turned on by receiving the bias power supplied from the first P-MOSFET turned on in the case in which the input signal has the low level and providing a gate signal depending on the turning-on of the second N-MOSFET and the second P-MOSFET.
Abstract:
A position detecting device for detecting a position of a magnet configured to move over a first target point and a second target point in steps includes a first hall device configured to generate a first hall voltage, a second hall device configured to generate a second hall voltage, a subtractor configured to generate a subtraction voltage based on a difference between the first hall voltage and the second hall voltage, an adder configured to generate an addition voltage based on a combination of the first hall voltage and the second hall voltage, a divider configured to calculate a ratio of the subtraction voltage to the addition voltage, and a subtraction voltage changing unit configured to maintain the subtraction voltage at the first target point and the second target point and in a transition section between the first target point and the second target point to be constant.
Abstract:
An apparatus controlling a position of a camera module includes an operating coil disposed on a housing of the camera module to face a magnetic member disposed on a lens barrel of the camera module, a driving circuit providing a driving current to the operating coil, a capacitor circuit having a capacitor value to form a resonance circuit together with the operating coil to resonate at a resonance frequency varied depending on an inductance value of the operating coil; a resonance maintaining circuit maintaining a level of a resonance signal generated by the operating coil and the capacitor circuit, a resonance frequency detecting circuit detecting a resonance frequency signal from the resonance signal generated by the operating coil and the capacitor circuit, and a control circuit configured to control the driving circuit in response to the resonance frequency signal from the resonance frequency detecting circuit.
Abstract:
A light emitting diode (LED) driving apparatus may include: a power converting unit switching input power to supply driving power to at least one LED; and a driving controlling unit controlling the supplying of the power of the power converting unit based on a switching period of the power converting unit and a demagnetization time in the switching period.
Abstract:
There is provided a light emitting diode (LED) driver including: a power supplying unit including a dimmer and a rectifying unit and supplying a supply voltage to an LED device; and a control unit acquiring section information regarding the supply voltage and setting an LED on-time based on the section information.
Abstract:
Disclosed herein is a voltage control circuit for a dimmer and a dimming method. In accordance with an embodiment, the dimming method using a voltage control circuit for a dimmer includes the steps of determining whether a current voltage value input to a constant dimming range maintainer is equal to a preset minimum or maximum voltage value or exists between the minimum and maximum voltage values, and determining whether the current voltage value is greater than the maximum voltage value when the current voltage value isn't equal to the minimum or maximum voltage value or doesn't exist between the minimum and maximum voltage values. The method further includes the steps of updating the minimum voltage value to the current voltage value when the current voltage value isn't greater than the maximum voltage value, and updating the maximum voltage value to the current voltage value when the current voltage value is greater than the maximum voltage value.
Abstract:
There is provide a light emitting diode lighting apparatus capable of being generally used in various kinds of dimmer, the apparatus including: a dimmer varying waveforms of input power according to a dimming signal; a bleeder adjusting a bleeding current under control; a controller comparing a latching current of the dimmer with the bleeding current of the bleeder to control the amount of the bleeding current; and an LED driver receiving a current other than the bleeding current flowing through the bleeder from among the currents from the dimmer to driver a light emitting diode (LED).
Abstract:
A position detecting device includes a detector circuit detecting a detection signal including information on a position of a magnet from a coil disposed in a housing and opposing the magnet, which is disposed in a lens barrel; and a control circuit converting the detection signal into a count value, determining a conversion formula based on the count value and a velocity of change in the count value, and detecting a position value using the determined conversion formula.