Abstract:
An apparatus and method are provided for feeding back channel quality information and performing scheduling using the fed-back channel quality information in a wireless communication system based on Orthogonal Frequency Division Multiple Access (OFDMA). In the OFDMA wireless communication system, forward performance degradation due to a decrease in an amount of reverse channel quality information is reduced, and also an increase in the reverse load due to channel quality information feedback is suppressed. A base station controls power of a physical channel using information fed back from a mobile station. In a method for feeding back channel quality information from the mobile station, sub-band-by-sub-band channel quality information is measured and channel-by-channel quality information of a number of channels is transmitted in order of sub-bands of better channel quality information. Average channel quality information for a total band is measured and transmitted.
Abstract:
A method for allocating resources in a mobile communication system is provided. The resource allocation method includes determining whether a transmission time of response information indicating presence/absence of an error in received data overlaps a transmission time of channel state information; and when the transmission times overlap each other, allocating, to the response information, a resource block for the channel state information, cyclic shift values in a frequency domain, and orthogonal sequences having orthogonality in a time domain.
Abstract:
Methods and apparatus are provided for transmitting and receiving data in a wireless communication system. Resource allocation information is received and hopping-related information is identified. A resource for transmitting data is determined based on the resource allocation information and hopping-related information, and data is transmitted on the determined resource. A sub-band is determined from a plurality of sub-bands based on the first hopping parameter and a resource in the determined sub-band is determined based on the second hopping parameter.
Abstract:
Methods and apparatuses are provided for reducing a Peak to Average Power Ratio (PAPR) in a digital broadcasting system. Reserved tones are determined in previously determined locations of sub-carriers that do not collide with a pilot signal of a preamble in a frame. A signal is transmitted through the reserved tones in a period for which the preamble is transmitted. If a Fast Fourier Transform (FFT) size is 8K, locations of the reserved tones are determined in accordance with a specified chart.
Abstract:
Methods and apparatuses are provided for receiving control information by a terminal. A control channel message is received on a control channel. Control information comprising a transmission rank and precoding matrix information is extracted from the control channel message if a common pilot is used for data demodulation. The control information comprising the transmission rank and information about a dedicated pilot is extracted from the control channel message if the dedicated pilot is used for the data demodulation.
Abstract:
Methods and apparatus are provided for transmitting and receiving data in a wireless communication system. Resource allocation information is received and hopping-related information is identified. A resource for transmitting data is determined based on the resource allocation information and hopping-related information, and data is transmitted on the determined resource. A sub-band is determined from a plurality of sub-bands based on the first hopping parameter and a resource in the determined sub-band is determined based on the second hopping parameter.
Abstract:
A method apparatus and system for efficiently transmitting and receiving channels are provided in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A multiplexing scheme differs according to a channel when a transmitter transmits a packet data channel, a common control channel and a control channel designated for a particular user. Uncoded 1-bit information is broadly dispersed in frequency and time domains using multiplexing technology for maximizing diversity in in a channel for transmitting information of at least one bit to a particular user like an acknowledgement (ACK) channel. The transmitter converts a sequence obtained by multiplexing multiple bits to be transmitted to a plurality of users to parallel signals, and broadly disperses the parallel signals in the time and frequency domains. When the uncoded 1-bit information is transmitted, reception reliability is improved because channel coding and transmission are efficiently performed using a small amount of resources.
Abstract:
An apparatus and method are provided for a mobile communication system. The method includes generating at least one symbol group to which an orthogonal sequence is applied; determining one of a first antenna set and a second antenna set for mapping the generated at least one symbol group based on the a symbol group index and a physical hybrid automatic repeat request indicator channel (PHICH) group index; mapping the generated at least one symbol group to the determined antenna set; and transmitting the mapped at least one symbol group.
Abstract:
An apparatus and method are provided for a mobile communication system. The method includes generating a symbol group to which an orthogonal sequence is applied; determining one of a first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol for mapping the generated symbol group based on a symbol group index and a physical hybrid automatic repeat request indicator channel (PHICH) group index; mapping the generated symbol group to the determined symbol; and transmitting the mapped symbol group.
Abstract:
Methods and apparatus are provided for transmitting and receiving uplink data in a wireless communication system. Hopping-related information is received at a mobile station from a base station. Resource allocation information is received at the mobile station from the base station. The uplink data is transmitted from the mobile station to the base station through at least one resource determined based on a sequence for sub-band hopping and a sequence for local hopping.