Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and emit X-rays, an X-ray detector configured to detect the X-rays and count a number of photons having energy equal to or greater than threshold energy per pixel among photons contained in the detected X-rays, a map generator configured to extract corrected threshold energy corresponding to target threshold energy mapped to each pixel, and a data correction unit configured to calculate corrected X-ray data corresponding to the corrected threshold energy per pixel from a plurality of X-ray data acquired based on a plurality of images of a target object obtained by using a plurality of approximate energies equal or approximate to the target threshold energy as threshold energy of the X-ray detector.
Abstract:
Provided are a calibration apparatus and method that may be used for setting a magnitude of an electric pulse based on a result obtained by imaging at least one imaging object, and that may be used for calibrating by mapping at least one photon energy corresponding to an absorption edge of at least one calibration object.
Abstract:
A calibration method of a radiation detecting apparatus, a control method of a radiation imaging apparatus and a radiation imaging apparatus are provided. The control method of the radiation imaging apparatus includes performing prior information acquisition by obtaining at least one correction threshold energy, at which a theoretical radiation intensity of at least one threshold energy is measured, and performing radiation image acquisition by obtaining at least one radiation image at the at least one threshold energy using the at least one correction threshold energy.
Abstract:
An X-ray imaging apparatus is provided. The X-ray imaging apparatus includes an X-ray generator configured to radiate X-rays onto an object having a region of interest (ROI) and a non-ROI, a filter configured to adjust an X-ray dose of the X-rays incident on the ROI and the non-ROI, an X-ray detector configured to detect the X-rays transmitted through the object and convert the X-rays into X-ray data, and an image processing unit configured to obtain a frame image using the X-ray data, register the obtained frame image to a previous frame image, synthesize the frame image and the previous frame image, and generate a reconstructed frame image.
Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source configured to generate and emit X-rays having a preset broadband, an X-ray detector including a plurality of raw pixels configured to detect an average of ten photons or less in response to the X-rays which are emitted and convert the detected photons into an electrical signal, and an image processor configured to produce a plurality of single-energy images corresponding respectively to a plurality of preset energy bands by separating the plurality of raw pixels for each of the plurality of preset energy bands based on the electrical signal, and to produce a multi-energy image using the single-energy images.
Abstract:
Disclosed are an X-ray imaging apparatus that captures one or more images of an inner part of the human body or the like, and a method for controlling the apparatus. In particular, an imaging system includes an X-ray generator which is configured to irradiate a target object with X-rays, a detector which is configured to detect X-rays which are emitted at a plurality of times and which have propagated through the target object, a driver which is configured to change a position of the X-ray generator or the detector, an image processor which is configured to generate a plurality of X-ray images from the detected X-rays and to compare the plurality of X-ray images in order to generate at least one difference image, and a controller which is configured to detect tissues which constitute the target object based on the at least one difference image.
Abstract:
Disclosed herein are an X-ray imaging apparatus and a method of controlling the same. The X-ray imaging apparatus includes an X-ray emitter to irradiate an object with X-rays and be movable, an X-ray detector to detect X-rays having passed through the object, convert the detected X-rays into an electric signal, and be movable, a location information collector to collect location information regarding the object, and a controller to control the X-ray emitter or the X-ray detector based on the location information regarding the object collected by the location information collector.
Abstract:
An electronic device, according to various embodiments, comprises: a communication unit; and a control unit, wherein the control unit may be configured to: receive, from one or more second electronic devices, via the communication unit, data regarding feedback on an image while transmitting the image that is received from a first electronic device to the one or more second electronic devices for displaying in the one or more second electronic devices; create a partial image for the one or more second electronic devices from the image on the basis of the data regarding the feedback; and provide the one or more second electronic devices with the partial image as an image corresponding to a user's preference associated with the one or more second electronic devices.
Abstract:
An X-ray imaging apparatus and method are provided. The X-ray imaging apparatus according to an aspect includes an X-ray source configured to radiate X-rays onto a subject region, an X-ray detector configured to detect the radiated X-rays and obtain a plurality of frame images of the subject region, and an ROI filter located between the X-ray source and the X-ray detector, configured to move toward the X-ray source and the X-ray detector, and configured to filter the X-rays radiated from the X-ray source.
Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source to generate X-ray beams, and to irradiate the X-ray beams onto an object; a first X-ray detector configured to detect X-ray beams transmitted through the object and generate a first phase contrast signal; an X-ray obtainer including an X-ray collimator and a second X-ray detector, wherein the X-ray collimator is spaced apart from the object by a predetermined distance, and configured to focus the X-ray beams transmitted through the object, and wherein the second X-ray detector is configured to detect the focused X-ray beams and generate a second phase contrast signal based on the detected X-ray beams; and an image processor configured to create a phase contrast image and an absorption image of the object.