Abstract:
An electrolyte including a polymer including a repeating unit represented by Formula 1 and a lithium salt. Also a lithium air battery and a method of preparing an electrolyte.
Abstract:
A metal air battery system includes an oxygen supplying unit configured to discharge oxygen; a metal air battery module configured to receive the oxygen from the oxygen supplying unit and perform a discharge reaction; and an auxiliary power source configured to charge the metal air battery module during an operational stop of the metal air battery module so that at least some of a discharge product is discharged from the metal air battery module.
Abstract:
A lithium air battery including a composite cathode including a porous material and a first solid electrolyte; a lithium metal anode; an oxygen blocking layer adjacent to the anode; and a cathode interlayer disposed between the cathode and the oxygen blocking layer, wherein the cathode interlayer includes a lithium ion conducting second solid electrolyte.
Abstract:
A cathode of a metal-air battery includes an electrically conductive metal oxide in a three-dimensional (3D) network structure, wherein the electrically conductive metal oxide of the three-dimensional network structure is in a form of a plurality of strands, wherein a strand of the plurality of strands has an aspect ratio in a range of about 10 to about 107, and wherein the three-dimensional network structure has a porosity of about 70 volume percent to about 95 volume percent, based on a total volume of the three-dimensional network structure.
Abstract:
A lithium air battery including a composite cathode including a porous material and a first solid electrolyte; a lithium metal anode; an oxygen blocking layer adjacent to the anode; and a cathode interlayer disposed between the cathode and the oxygen blocking layer, wherein the cathode interlayer includes a lithium ion conducting second solid electrolyte.
Abstract:
A positive electrode for a lithium battery includes a lithium salt, a carbonaceous material, and a coating on a surface of the carbonaceous material, the coating including a polymer electrolyte including a hydrophilic material and a hydrophobic material, wherein a portion of the polymer electrolyte is anchored to the surface of the carbonaceous material by a chemical bond.
Abstract:
A cathode configured to use oxygen as a cathode active material, the cathode including: a cathode mixed conductor; and an additive disposed on the cathode mixed conductor and having a boiling temperature of about 200° C. or greater.
Abstract:
A gas diffusion layer for a metal-air battery may include a plurality of carbon nanotube thin films that are arranged to be stacked, and the carbon nanotube thin films may include a plurality of first carbon nanotubes arranged in a predetermined direction. The gas diffusion layer for the metal-air battery may include a plurality of carbon nanotube thin films in which a plurality of carbon nanotubes are arranged such that they cross each other by a floating catalyst chemical vapor deposition (“FCCVD”) method.
Abstract:
An air electrode including: a carbonaceous material having an electrolyte-philic ion-dissociative functional group coated on a surface thereof; a lithium salt; and an electrolyte, wherein the carbonaceous material has a specific surface area of about 500 m2/g or greater, and the electrolyte-philic ion-dissociative functional group is electrochemically stable in a voltage range of about 1.5 V to about 4.5 V with respect to lithium.
Abstract:
A metal air battery includes a battery cell module configured to generate electricity based on oxidation of a metal and reduction of oxygen; a first air purification module in fluid communication with the battery cell module and configured to supply stabilized air to the battery cell module when the metal air battery is charged; and a second air purification module in fluid communication with the battery cell module and configured to supply purified air to the battery cell module when the metal air battery is discharged.