Abstract:
An electrolyte for a lithium air battery includes a compound represented by Formula 1 wherein the definitions of A and R1-R10 are disclosed herein. Also a lithium air battery including an anode, a cathode, and at least one selected from the herein-described electrolyte and a reaction product thereof.
Abstract:
An electrolyte for a lithium air battery includes a compound represented by Formula 1 wherein the definitions of A and R1-R10 are disclosed herein. Also a lithium air battery including an anode, a cathode, and at least one selected from the herein-described electrolyte and a reaction product thereof.
Abstract:
An electrolyte includes: a lithium salt; a non-aqueous solvent; and a disulfonate compound represented by Formula 1: wherein, in Formula 1, R1 and R2 are each independently a fluorine, a cyano group, a nitro group, or a methyl group substituted with at least one fluorine, R11 to R14 are each independently a hydrogen, a deuterium, a fluorine, a hydroxyl group, a cyano group, a nitro group, a substituted or unsubstituted C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, or a substituted or unsubstituted C2-C10 alkynyl group, a1 and a2 are each independently an integer of 1 to 5, a11 and a12 are each independently an integer of 0 to 4, and a sum of a1 and a11 is 5, and a sum of a2 and a12 is 5.
Abstract:
A lithium secondary battery including a cathode; an anode; and an electrolyte disposed between the cathode and the anode, wherein the cathode includes a cathode active material represented by Formula 1, the electrolyte includes a lithium salt; a non-aqueous solvent; and a monofluorosilane compound represented by Formula 2, wherein an amount of the monofluorosilane compound is in a range of about 0.1 percent by weight (wt %) to about 5 wt % based on the total weight of the electrolyte wherein, in Formula 1, 0.9≤x≤1.2, 0.85
Abstract:
A lithium secondary battery includes a positive electrode; a negative electrode; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, and the electrolyte includes a lithium salt; a non-aqueous solvent; and a phosphite compound represented by Formula 2, wherein the phosphite compound is present in amount of about 0.1 wt % to about 5 wt % based on a total weight of the electrolyte: LixNiyM1-yO2-zAz Formula 1 wherein, in Formula 1, 0.9≤x≤1.2, 0.7≤y≤0.98, and 0≤z
Abstract:
An electrolyte includes: a lithium salt; a non-aqueous solvent; and a disulfonate compound represented by Formula 1: wherein, in Formula 1, R1 and R2 are each independently a fluorine, a cyano group, a nitro group, or a methyl group substituted with at least one fluorine, R11 to R14 are each independently a hydrogen, a deuterium, a fluorine, a hydroxyl group, a cyano group, a nitro group, a substituted or unsubstituted C1-C10 alkyl group, a substituted or unsubstituted C2-C10 alkenyl group, or a substituted or unsubstituted C2-C10 alkynyl group, a1 and a2 are each independently an integer of 1 to 5, a11 and a12 are each independently an integer of 0 to 4, and a sum of a1 and a11 is 5, and a sum of a2 and a12 is 5.
Abstract:
A lithium secondary battery includes a positive electrode; a negative electrode; and an electrolyte disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, and the electrolyte includes a lithium salt; a non-aqueous solvent; and a phosphite compound represented by Formula 2, wherein the phosphite compound is present in amount of about 0.1 wt % to about 5 wt % based on a total weight of the electrolyte: LixNiyM1-yO2-zAz Formula 1 wherein, in Formula 1, 0.9≦x≦1.2, 0.7≦y≦0.98, and 0≦z
Abstract:
A metal air battery includes a battery cell module configured to generate electricity based on oxidation of a metal and reduction of oxygen; a first air purification module in fluid communication with the battery cell module and configured to supply stabilized air to the battery cell module when the metal air battery is charged; and a second air purification module in fluid communication with the battery cell module and configured to supply purified air to the battery cell module when the metal air battery is discharged.
Abstract:
A lithium secondary battery includes: a positive electrode; an negative electrode; and an electrolyte between the positive electrode and the negative electrode, wherein the positive electrode includes a positive active material represented by Formula 1, the electrolyte includes a lithium salt, a non-aqueous solvent, and a trialkoxyalkylsilane compound represented by Formula 2, and an amount of the trialkoxyalkylsilane compound in the electrolyte is about 0.1 weight percent to about 5 weight percent based on a total weight of the electrolyte: wherein, in Formula 1 and Formula 2, x, y, z, M, A, R1 to R3, and Ar are as defined as the specification.
Abstract:
An organic electrolyte solution includes a lithium salt; an organic solvent; and a fluorine-containing phosphate compound represented by Formula 1: wherein, in Formula 1, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, and R15 are each independently a hydrogen atom, a fluorine atom, a C1-C5 alkyl group substituted or not substituted with a halogen atom, a C4-C10 cycloalkyl group substituted or not substituted with a halogen atom, a C6-C10 aryl group substituted or not substituted with a halogen atom, a C2-C10 heteroaryl group substituted or not substituted with a halogen atom, or a C2-C10 alkenyl group substituted or not substituted with a halogen atom, at least one of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, or R15 is a fluorine atom, and at least one phenyl group does not have a fluorine atom.