Abstract:
An evaluating device of a flexural property includes a holder, a body disposed on the holder and capable of being moved along with a length of direction of the holder, a clamp coupled to the body to be rotated on the body and fixing a first side of the specimen to be evaluated, and a pressing part disposed over the clamp and pressing a second side of the specimen opposite to the first side and disposed upper than the first side of the specimen to bend the specimen, and an evaluation method of a flexural property of the bent specimen using the same.
Abstract:
An antireflection film includes a polarizer, a first retardation film disposed on a side of the polarizer and having a reverse wavelength dispersion phase delay, and a second retardation film disposed on at least one side of the first retardation film and including a polymer, wherein the polymer includes a structural unit derived from a monomer selected from styrene, a styrene derivative, or a combination thereof, and the polymer has a glass transition temperature of greater than about 100° C.
Abstract:
An optical film includes a polarizer, a uniaxially elongated film disposed on the polarizer, and a compensation film disposed on one side of the uniaxially elongated film. The polarizer includes a polymer having a glass transition temperature of greater than about 100° C. and including a structural unit derived from styrene or a styrene derivative. The compensation film has a refractive index satisfying Relationship Equations 1 and 2, the uniaxially elongated film has an in-plane retardation satisfying Relationship Equation 3 and a thickness retardation satisfying Relationship Equation 4, and the compensation film has an in-plane retardation satisfying Relationship Equation 5 and a thickness retardation satisfying Relationship Equation 6. A liquid crystal display including the optical film is also disclosed. Relationship Equations 1 to 6 are described in the detailed description.
Abstract:
A compensation film includes a first retardation layer comprising a polymer having negative birefringence, and a second retardation layer comprising a polymer having negative birefringence, where the first retardation layer has an in-plane retardation (Re1) in a range of about 180 nanometers to about 300 nanometers for incident light having a wavelength of about 550 nanometers, the second retardation layer has an in-plane retardation (Re2) in a range of about 60 nanometers to about 170 nanometers for the incident light having the wavelength of about 550 nanometers, and the entire in-plane retardation (Re0) of the first retardation layer and the second retardation layer for incident light having wavelengths of about 450 nanometers and about 550 nanometers satisfies the following inequation: Re0(450 nm)
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
Disclosed are a surface coating material including a first material and a second material having a different structure, wherein the first material has a greater weight average molecular weight than the second material, a film, a stacked structure, a display device, and an article including a glass substrate coated with the surface coating material.
Abstract:
An evaluating device of a flexural property includes a holder, a body disposed on the holder and capable of being moved along with a length of direction of the holder, a clamp coupled to the body to be rotated on the body and fixing a first side of the specimen to be evaluated, and a pressing part disposed over the clamp and pressing a second side of the specimen opposite to the first side and disposed upper than the first side of the specimen to bend the specimen, and an evaluation method of a flexural property of the bent specimen using the same.
Abstract:
A phase difference film including: a phase difference thin film including at least two non-liquid crystal polymers, wherein the phase difference thin film satisfies refractive indexes of nx≥ny>nz and has a thickness direction phase difference per unit thickness of greater than or equal to about 80 nm/μm, wherein nx denotes a refractive index of the phase difference thin film at a slow axis thereof, ny denotes a refractive index of the phase difference thin film at a fast axis thereof, and nz denotes a refractive index of the phase difference thin film in a direction perpendicular to the slow axis and the fast axis thereof, and wherein an average light transmittance in a wavelength region of about 360 nm to about 740 nm is greater than or equal to about 88%, and a display device including the same.
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.