Abstract:
A method, system and computer-readable medium for providing feedback effects for an image. The method includes identifying one or more features in an area of the image. The method also includes mapping the one or more identified features to at least one of multiple modalities of feedback effects. Additionally, the method includes generating parameters for feedback effect output and storing the generated parameters in association with the image such that, in response to coordinates of an input of a user corresponding to the area of the image, a user interface associated with the image is configured to provide at least one of the multiple modalities of feedback effects to the user. The multiple modalities of feedback effects include one or more visual feedback effects, one or more haptic feedback effects and one or more audio feedback effects.
Abstract:
Methods and apparatuses manage beam selection. A method for a mobile station (MS) includes identifying beamforming constraints of the MS. The method also includes performing measurement on a channel between a base station (BS) and the MS on at least one transmit (TX) beam and at least one receive (RX) beam. Additionally, the method includes sending beamforming feedback information based on the identified constraints of the MS and the channel measurement. A method for a base station (BS) includes receiving beamforming feedback information comprising at least one of radio frequency beamforming constraints of a mobile station or channel measurement information on a channel between the BS and the MS. Additionally, the method includes sending, to the MS, control information comprising an indication of at least one of MS RX beams or BS TX beams to be used in downlink communication with the MS based on the received beamforming feedback information.
Abstract:
A base station and mobile station are configured to perform control beam association. A method at the base station includes transmitting at least one first control beam including reference signals on which the mobile station can perform a measurement. The method also includes receiving a first measurement report from the mobile station of the at least one first control beam. The method further includes, based on the first measurement report, selecting at least one of the at least one first control beam for at least one control channel for the mobile station to associate with. The method still further includes transmitting control information in the at least one control channel to the mobile station using the at least one selected control beam, the control information comprising at least one resource allocation indication for the mobile station. The at least one selected control beam is associated to the mobile station.
Abstract:
Methods and apparatus of a base station (BS) or a user equipment (UE) that communicate with each other via one or more directional beams. The BS sends and the UE receives a timing advance (TA). The BS receives information sent by the UE via a receive beam of the one or more directional beams of the BS and via an uplink (UL) control region of an UL control channel. The UL control region of the UL control channel identified via the TA and the receive beam.
Abstract:
To reduce the duration of a cyclic prefix used for a multiple input, multiple output (MIMO) communications channel, delay spread variations for different transmit/receive beam pair combination is estimated and used for fast beam switching and to support single user MIMO (SU-MIMO) even when the CP difference between two beams is large. Beam switching reference signals are employed to estimate delay spread exceeding current CP, and to support beam switching. CP covering sub-clusters within clusters for the MIMO channel are exploited to reduce the CP requirement and improve efficiency. Any one of a number of different CP durations may be selected for each different mobile station, using one of a finite set of subframe configurations for which the CP durations of different symbol locations within the subframe are predefined. Dynamically switching subframe configurations by the system accommodates high mobility.
Abstract:
Time, frequency and spatial processing parameters for communications between a base station and a mobile station are selected by transmitting synchronization signals in multiple slices of a wireless transmission sector for the base station, and receiving feedback from the mobile station of at least one preferred slice of the multiple slices. In response to selection of one of the slices as an active slice for communications between the base station and the mobile station, reference signals are transmitted in the selected active slice using a corresponding selected precoder and/or codebook. The mobile station estimates and feeds back channel state information (CSI) based on those reference signals, and the CSI is then employed to determine communication parameters for communications between the base station and mobile station that are specific to the mobile station.
Abstract:
A base station is capable of communicating with a plurality of subscriber stations using a beamforming scheme that varies beams over different time instances. The base station includes a plurality of antenna arrays configured to transmit N spatial beams and carry a reference symbols corresponding to specific spatial beams. The base station also includes NRF number of radio frequency (RF) processing chains coupled to respective ones of the plurality of antenna arrays, wherein N>>NRF. The subscriber station includes MRF processing receive paths configured to receive M number of beams from the base station.
Abstract:
Time, frequency and spatial processing parameters for communications between a base station and a mobile station are selected by transmitting synchronization signals in multiple slices of a wireless transmission sector for the base station, and receiving feedback from the mobile station of at least one preferred slice of the multiple slices. In response to selection of one of the slices as an active slice for communications between the base station and the mobile station, reference signals are transmitted in the selected active slice using a corresponding selected precoder and/or codebook. The mobile station estimates and feeds back channel state information (CSI) based on those reference signals, and the CSI is then employed to determine communication parameters for communications between the base station and mobile station that are specific to the mobile station.
Abstract:
A method, system and computer-readable medium for providing feedback effects for an image. The method includes identifying one or more features in an area of the image. The method also includes mapping the one or more identified features to at least one of multiple modalities of feedback effects. Additionally, the method includes generating parameters for feedback effect output and storing the generated parameters in association with the image such that, in response to coordinates of an input of a user corresponding to the area of the image, a user interface associated with the image is configured to provide at least one of the multiple modalities of feedback effects to the user. The multiple modalities of feedback effects include one or more visual feedback effects, one or more haptic feedback effects and one or more audio feedback effects.
Abstract:
A mobile station performs a method for paging configuration in a wireless network. The method includes transmitting, to a base station, a parameter M representing a number of receiving (RX) beam instances at the mobile station in idle mode for the mobile station to finish one round of beam steering. The method also includes determining a timing for receiving a paging message from the base station, the timing being a function of the parameter M, the paging message comprising a mobile station identifier. The method further includes receiving the paging message from the base station based on the determined timing.