Abstract:
A relay node capable of supporting wireless backhaul communication includes a controller configured to identify a first timing of a backhaul downlink (DL) transmission and a second timing of an access uplink (UL) transmission to be substantially aligned, and a transceiver configured to receive at least one first symbol in the backhaul DL transmission from an base station (BS), and receive at least second symbol in an access UL transmission from a user equipment (UE). The controller is further configured to substantially align a third timing of a backhaul uplink (UL) transmission and a fourth timing of an access downlink (DL) transmission, wherein the transceiver is further configured to transmit at least third symbol in a backhaul uplink (UL) transmission to the BS, and transmit at least fourth symbol in the access DL transmission to the UE.
Abstract:
A method for user equipment (UE) in a wireless communication network. The method comprises identifying a plurality of beams for a semi-open-loop PDSCH data transmission based on at least one of a plurality of precoder cycling types, wherein a precoder comprises a beam and a co-phase, and the plurality of precoder cycling types including at least one of a beam cycling from the plurality of beams or a co-phase cycling from a plurality of co-phases, receiving PDSCH data through the semi-open-loop PDSCH data transmission according to the at least one of the plurality of precoder cycling types, and identifying the plurality of beams based on the at least one of the plurality of precoder cycling types, wherein the precoder comprising the beam and co-phase, and the plurality of precoder cycling types is cycled across a plurality of resource blocks (RBs) using the at least one of the beam cycling or the co-phase cycling with at least one of a cycling period or granularity from at least one of a plurality of cycling periods or granularities including at least one of a single resource element (RE), a single RB, multiple REs, or multiple RBs.
Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.
Abstract:
A low density parity check decoder is provided that includes a variable-node (VN) processing domain comprising high-bit resolution processing circuitry, a check-node (CN) processing domain comprising low-bit resolution processing circuitry lower than the high-bit resolution processing circuitry, and mapping circuitry configured to transfer a message between the VN processing domain and the CN processing domain.
Abstract:
For use in visible light communication (VLC), synchronization with multiple topology support while transmitting an extended preamble includes transmitting a two-part preamble sequence. The preamble sequence includes one or more repetitions of a fast locking pattern (FLP) configured to be used clock synchronization, and one or more repetitions of a topology dependent pattern (TDP) configured to be used to distinguish a plurality of VLC topologies. The method for transmitting an extended preamble includes generating an extended preamble and transmitting the extended preamble during a receive or idle mode for maintaining visibility support and for better synchronization performance.
Abstract:
A transmit resonator includes at least two loop resonators, disposed in such that the magnetic field produced by each in the near-field zone is substantially orthogonal to that produced by the other at a certain or specific portion of the zone, a power divider configured to split a signal into at least two sub-signals with weighting coefficients, a delay array configured to delay the at least one of the sub-signals and feed each of the sub-signals to each of the loop resonators, and a controller to configure the delay array to control the polarization of the near zone magnetic field. A communication module to receive feedback information from a receiver, to determine the phases of at least two sub-signals to generate a near zone magnetic field optimized for the receiver.
Abstract:
A system is configured to perform Spatial Division Multiple Access. The system includes at least one transmitter or receiver capable of polarization alignment. The transmitter includes a baseband precoder configured to precode a signal, an array of sub-array antennas and a plurality of radio frequency (RF) chains. Each RF chain is coupled to a respective antenna sub-array of the array of antennas. The transmitter is configured to perform a method that includes precoding, by a baseband precoder, a signal for spatial division multiple access (SDMA). The method also includes applying, by each of the plurality of radio frequency (RF) chains, a phase shift and beamforming weight to the signal and transmitting the phase shifted and weighted signal by an array of sub-array antennas.
Abstract:
Methods and Apparatuses for a transceiver calibration and antenna array operation in a multi-input multi-output (MIMO) system. One of the methods for operation of one or more of the apparatuses comprises sending a calibration signal and a pre-designed training sequence, via a coupling network, receiving a calibration signal and a pre-designed training sequence that is sent by the transceiver array in a time slotted pattern via a coupling network, generating an Rx calibration measurement (R1) based on one or more uplink signals received via antenna array and the coupling network, generating a Tx calibration measurement (T1) based on receipt of the calibration signal from each of antennas via the coupling network; and performing a joint Tx/Rx (TRx) calibration based on HR, R1, and T1, where H is a channel response in air interface, R is a channel response of receivers in transceiver array.
Abstract:
A relay node capable of supporting wireless backhaul communication includes a controller configured to identify a first timing of a backhaul downlink (DL) transmission and a second timing of an access uplink (UL) transmission to be substantially aligned, and a transceiver configured to receive at least one first symbol in the backhaul DL transmission from an base station (BS), and receive at least second symbol in an access UL transmission from a user equipment (UE). The controller is further configured to substantially align a third timing of a backhaul uplink (UL) transmission and a fourth timing of an access downlink (DL) transmission, wherein the transceiver is further configured to transmit at least third symbol in a backhaul uplink (UL) transmission to the BS, and transmit at least fourth symbol in the access DL transmission to the UE.
Abstract:
Methods and apparatuses for association in a beamformed wireless area network (WLAN) are provided. A method for operating a station (STA) includes randomly selecting a plurality of sector sweep frames for association beam transmission within a frame-aligned transmit sector sweep duration in an association beamforming training duration of a beacon interval, transmitting a beam in each of the randomly selected sector sweep frames, and receiving sector sweep feedback from an access point (AP). A method for operating the AP includes receiving at least one transmission from one or more STAs on at least one of randomly selected sector sweep frames within the frame-aligned transmit sector sweep duration, selecting a sector identifier for transmissions from each of the one or more STAs based on the at least one received transmission, and transmitting grouped sector sweep feedback indicating the selected sector identifier for transmissions from each of the one or more STAs.