Abstract:
A device and method to display a screen based on an event are provided. A device according to an exemplary embodiment may display, in response to an event associated with a movement of an object, a graphic representation that corresponds to the event by overlaying the graphic representation on visual contents.
Abstract:
A method and device for recognizing a motion of an object, the method including receiving event signals from a vision sensor configured to sense the motion, storing, in an event map, first time information indicating a time at which intensity of light corresponding to the event signals changes; generating an image based on second time information corresponding to a predetermined time range among the first time information, and recognizing the motion of the object based on the image.
Abstract:
A method and apparatus for detecting an object using an event-based sensor is provided. An object detection method includes determining a feature vector based on target pixels and neighbor pixels included in an event image, and determining a target object corresponding to the target pixels based on the feature vector.
Abstract:
A method and an apparatus for displaying a screen in response to an event related to a motion of an external object, are provided. The method includes generating an event signal in response a motion of an external object being sensed, sensing a movement of the external object relative to an apparatus based on the event signal, and displaying a screen based on the movement of the external object.
Abstract:
An event filtering device and a motion recognition device using thereof are provided. The motion recognition device includes an emitter configured to emit an infrared ray in a pattern; a detector configured to detect events in a visible ray area and an infrared ray area; a filter configured to determine whether at least one portion of the detected events is detected using the infrared ray in the pattern, and filter the detected events based on a result of the determination; and a motion recognizer configured to perform motion recognition based on a detected event accepted by the filter.
Abstract:
A proximity sensor and proximity sensing method using a change in light quantity of a reflected light are disclosed. The proximity sensor may include a quantity change detection unit which detects a change in a quantity of reflected light which is output light which has been reflected by an object, where an intensity of the output light changes, and a proximity determination unit which determines a proximity of the object to the quantity change detection unit based on a change in the intensity of the output light and the detected change in the quantity of the reflected light.
Abstract:
An apparatus for providing a user interface provides a first user interface mode, and can switch to a second user interface mode if it receives a user command instructing to switch the mode to the second user interface mode which has a different user command input method from the first user interface mode. In the switching process, the apparatus is configured to reset a recognition pattern to distinguish a smaller number of user input types than the number of the user input types distinguishable in the first UI mode.
Abstract:
An object recognition apparatus and an object recognition method are provided. The object recognition method includes generating an input image based on an event flow of an object, generating a composite feature based on features extracted by a plurality of recognizers, and recognizing the object based on the composite feature.
Abstract:
An apparatus and a method. The apparatus includes an image representation unit configured to receive a sequence of frames generated from events sensed by a dynamic vision sensor (DVS) and generate a confidence map from non-noise events; and an image denoising unit connected to the image representation unit and configured to denoise an image in a spatio-temporal domain. The method includes receiving, by an image representation unit, a sequence of frames generated from events sensed by a DVS, and generating a confidence map from non-noise events; and denoising, by an image denoising unit connected to the image representation unit, images formed from the frames in a spatio-temporal domain.
Abstract:
A method of recognizing an object includes controlling an event-based vision sensor to perform sampling in a first mode and to output first event signals based on the sampling in the first mode, determining whether object recognition is to be performed based on the first event signals, controlling the event-based vision sensor to perform sampling in a second mode and to output second event signals based on the sampling in the second mode in response to the determining indicating that the object recognition is to be performed, and performing the object recognition based on the second event signals.