Abstract:
An electronic device and a method for controlling the operation of the electronic device are provided. The electronic device includes a wireless power reception circuit, a wireless communication circuit, and a processor configured to control to receive first identity information through a first in-band communication channel using the wireless power reception circuit, establish a first out-of-band communication channel based on the first identity information while the first in-band communication channel is established, receive second identity information through a second in-band communication channel while the first out-of-band communication channel is established, disconnect, when the first out-of-band communication channel is established while the second in-band communication channel is established, the first out-of-band communication channel, and establish a second out-of-band communication channel automatically based on the second identity information.
Abstract:
An electronic device and a method thereof, which supports fast wireless charging, are provided. The electronic device includes a wireless power circuit, and one or more processors which are functionally connected with the wireless power circuit, wherein the one or more processors are configured to execute detecting an external electronic device through the wireless power circuit, determining wireless power information corresponding to the external electronic device, determining whether the external electronic device supports a first charging power or a second charging power, at least partially based on the wireless power information, providing the first charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the first charging power, and providing the second charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the second charging power.
Abstract:
A wireless power transmission apparatus is provided. The wireless power transmission apparatus includes an upper housing, a lower housing coupled to the upper housing, a substrate disposed between the upper housing and the lower housing, a transmit coil disposed between the upper housing and the substrate and formed by being wound in the form of rotating on the substrate, at least one temperature sensor including a pattern resistor, a resistance numerical value which varies with temperature, and a flexible printed circuit board (FPCB) on which the at least one temperature sensor is disposed. The pattern resistor is disposed on the FPCB in a pattern of being wound in a first direction from any first point on the FPCB to any second point different from the any first point on the FPCB around a central portion of the FPCB and being rewound in a second direction opposite to the first direction.
Abstract:
An electronic device capable of transmitting and receiving wireless power is provided. The electronic device includes a wireless power transfer (WPT) coil, a sensor coil surrounding the WPT coil, and a processor operatively coupled to the WPT coil and the sensor coil. The processor may be configured to control to transmit and receive power by using the WPT coil, perform a ping operation by using the sensor coil, control to measure a waveform of a current or voltage of the sensor coil while or after performing the ping operation using the sensor coil, control to check a Q factor of the sensor coil based on the measured waveform, identify the presence of a foreign object based on the checked Q factor, and control the power transmission using the WPT coil based on a result of the determination of the presence of the foreign object.
Abstract:
An electronic device includes a power transmitting circuit configured to transmit power to a wireless power receiver, a communication circuit configured to perform communication with the wireless power receiver, and a control circuit configured to control the power transmitting circuit to apply first power to a coil of the power transmitting circuit, control the power transmitting circuit to stop applying the first power and to prevent power from being applied to the coil during a first period, identify a first Q-factor during the first period, control the power transmitting circuit to apply, to the coil, a second power based on a calibration operation for identifying at least one parameter used for identifying a power loss during power transmission, control the power transmitting circuit to stop applying the second power and to prevent power from being applied to the coil during a second period, identify a second Q-factor during the second period, and identify a validity of the at least one parameter based on the first Q-factor or the second Q-factor.
Abstract:
An electronic device and a method thereof, which supports fast wireless charging, are provided. The electronic device includes a wireless power circuit, and one or more processors which are functionally connected with the wireless power circuit, wherein the one or more processors are configured to execute detecting an external electronic device through the wireless power circuit, determining wireless power information corresponding to the external electronic device, determining whether the external electronic device supports a first charging power or a second charging power, at least partially based on the wireless power information, providing the first charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the first charging power, and providing the second charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the second charging power.
Abstract:
An electronic device is provided. The electronic device includes a housing, a wireless charging coil disposed inside the housing, a fan disposed inside the housing and in proximity to the coil, a temperature sensor disposed inside the housing and in proximity to the coil, a wireless charging circuit having the coil and configured to transmit power wirelessly to an external device via the coil, and a control circuit electrically connected to the fan, the temperature sensor, and the wireless charging circuit. The control circuit may be configured to receive a signal from the external device, receive data related to a temperature of the coil from the temperature sensor, and control the fan at least partially on the basis of at least one of the signal and the data.
Abstract:
An electronic device and an operation method thereof according to various example embodiments wirelessly receive detection power for detecting the electronic device, and put a limitation on storing the power.
Abstract:
An electronic device comprising: a battery having a plurality of cells that are connected in series; a circuit electrically connected to the battery; and a conductive pattern electrically connected to the circuit, wherein the circuit is configured to: receive a first signal wirelessly from a first external device by using the conductive pattern, charge at least some of the plurality of cells in the battery by using a power of the first signal, generate a second signal by changing a first voltage, that is produced by at least two of the plurality of cells in the battery, into a second voltage that is lower than the first voltage, and wirelessly transmit the second signal to a second external device, the second signal being transmitted by using the conductive pattern.
Abstract:
Various embodiments of the present disclosure relate to an apparatus and method for controlling a differential signal of a wireless power transmitter. For example, an apparatus for controlling a differential signal of a wireless power transmitter may include a converter configured to convert a single signal into differential signals; an amplifier operably coupled to the converter and configured amplify power of the differential signals, thereby providing amplified differential signals; a gauge operably coupled to the amplifier and configured to measure a phase difference and amplitude between the amplified differential signals; and a controller for converting a pulse width of the differential signals by controlling the converter according to measurements by the gauge. Further, various embodiments of the present disclosure also include other embodiments other than the aforementioned embodiments.