Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.
Abstract:
A method for performing a network entry procedure by a Mobile Station (MS) in a cloud cell communication system is provided. The method includes determining whether there is an arbitrary cloud cell member candidate Base Station (BS) as a cloud cell member candidate BS which has transmitted a downlink synchronization signal with a signal strength, if there is the arbitrary cloud cell member candidate BS, determining the arbitrary cloud cell member candidate BS as a final cloud cell member candidate BS which will perform a cooperative communication with the master BS, transmitting an access request message including information on the final cloud cell member candidate BS to the master BS, and receiving an access response message including information on a cloud cell member BS from the master BS.
Abstract:
An apparatus and a method for operating a mobile station in a wireless communication system are provided. The method includes receiving first information transmitted on a secondary carrier from a base station, and transmitting second information for feedback related to the secondary carrier at a feedback region in a primary carrier based on the first information to the base station.
Abstract:
A base station and terminal use methods of obtaining synchronization and system information in a wireless communication system. An operation of a base station includes generating a synchronization signal to be transmitted through a Synchronization Channel (SCH), generating a broadcast signal to be transmitted through a Broadcast Channel (BCH), and transmitting repetitively the SCH and the BCH by performing beamforming on the channels with different transmission beams.
Abstract:
A communication method and apparatus using analog and digital hybrid beamforming are provided. The method includes receiving a first message including a measurement and selection condition for hybrid beamforming from a Base Station (BS), measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least one BS transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beam according to the measurement and report condition, determining feedback information for digital beamforming of the BS based on the effective channel matrix, transmitting the determined feedback information to the BS, and receiving a data burst from the BS according to a Multiple Input Multiple Output (MIMO) mode and/or a configuration scheduled based on the feedback information.
Abstract:
Apparatuses and methods for maintaining an optimal beam direction in a wireless communication system are provided. The method for operating a receiving node in a wireless communication system includes, determining a first transmission beam is determined as a preferred transmission beam using a plurality of reference signals transmitted by a transmitting node, generating preferred transmission beam information, transmitting the preferred transmission beam information to the transmitting node, receiving transmissions from the transmitting node via the first transmission beam, and determining whether a change of a transmission beam is necessary. When the change of the transmission beam is determined to be necessary, generating a beam change request and transmitting the beam change request to the transmitting node.
Abstract:
A method for performing a network entry procedure by a Mobile Station (MS) in a cloud cell communication system is provided. The method includes determining whether there is an arbitrary cloud cell member candidate Base Station (BS) as a cloud cell member candidate BS which has transmitted a downlink synchronization signal with a signal strength, if there is the arbitrary cloud cell member candidate BS, determining the arbitrary cloud cell member candidate BS as a final cloud cell member candidate BS which will perform a cooperative communication with the master BS, transmitting an access request message including information on the final cloud cell member candidate BS to the master BS, and receiving an access response message including information on a cloud cell member BS from the master BS.
Abstract:
A communication method and apparatus using analog and digital hybrid beamforming are provided. The method includes receiving a first message including a measurement and selection condition for hybrid beamforming from a Base Station (BS), measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least one BS transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beam according to the measurement and report condition, determining feedback information for digital beamforming of the BS based on the effective channel matrix, transmitting the determined feedback information to the BS, and receiving a data burst from the BS according to a Multiple Input Multiple Output (MIMO) mode and/or a configuration scheduled based on the feedback information.