Abstract:
A method for routing data by a Corresponding Mobility Agent (CMA) in a mobile communication system is provided. The method includes managing mobility for a Mobile Station (MS) with a Mobile Access Gateway (MAG), and routing a data packet between a Corresponding Node (CN) and the MS based on a location of the MS, wherein the CMA is mapped to an application server which provides an application service.
Abstract:
Beam selection is provided. A method for handover in a mobile station includes sending a scan request message for scanning a downlink (DL) beam with respect to a serving base station (BS) and a neighboring BS, to the serving BS, and receiving a scan response message; determining the DL beam for the MS by performing scanning with the serving BS and the neighboring BS based on the scan response message; sending a scan report message comprising a result of the scanning to the serving BS; when receiving an air-HO request message from the serving BS, generating an air-HO response message comprising information of a neighboring BS to which the MS hands over based on the air-HO request message; performing beam selection with the neighboring BS of the handover based on the air-HO request message; and performing the handover.
Abstract:
According to an embodiment of the present invention, a method whereby a terminal receives scheduling data in a wireless communication system using beamforming comprises the processes of: receiving scheduling data via a first scheduling channel from a first base station; and receiving scheduling data via at least one second scheduling channel, by using at least one receiving beam from at least one second base station that cooperates (cooperate) with the first base station.
Abstract:
An apparatus performs a method for managing mobility of a terminal by a Base Station (BS) in a wireless communication system. The method includes receiving information on whether a time for which a terminal had been located at a cell managed by a first BS before the terminal has moved to a cell managed by the BS is equal to or longer than a predetermined threshold. The method also includes controlling data transmission/reception of the terminal by using one of an address allocated to the terminal by the BS or an address allocated to the terminal by a home server according to whether the time for which the terminal had been located at the cell managed by the first BS is equal to or longer than the predetermined threshold.
Abstract:
A method for optimizing a data-path by a source Base Station (BS) in a mobile communication network includes determining whether a tunnel among new BSs is set up while tracking a data-flow for a Mobile Station (MS), if the tunnel among the new BSs is set up, determining whether there is a bounce-back, if there is at least one bounce-back, transmitting a first message for detecting a root of an arbitrary bounce-back among the at least one bounce-back and setting up a short-cut tunnel to other end of the arbitrary bounce-back, and after transmitting the first message, receiving a second message including bounce-back root information indicating the root of the arbitrary bounce-back from the other end of the arbitrary bounce-back. Other various embodiments including a source BS, a target BS, and a backhaul network are also disclosed.
Abstract:
A method for allocating a resource in a serving base station (BS) in a cooperative communication system is provided. The method includes detecting a base station identifier (BSID) of the serving BS and a BSID of each of other serving BSs included in the cooperative communication system; determining an available resource which the serving BS will use and an available resource which each of other serving BSs will use based on the BSID of the serving BS and the BSID of each of the other serving BSs; and transmitting information on the determined available resources to cooperative communication cell member BSs which the serving BS manages.
Abstract:
A method for handling an UpLink (UL) resource request in a master Base Station (BS) exchanging data with a plurality of BSs in a communication system is provided. The method includes receiving UL resource request information from at least one slave BS in a cooperative cell, determining scheduled UL resource allocation information indicating information about resources for transmitting UL data, based on the UL resource request information, and delivering the scheduled UL resource allocation information to a Subscriber Station (SS) and the at least one slave BS. The UL resource request information may be generated depending on a UL resource request of the SS.
Abstract:
A method for optimizing a data-path by a source Base Station (BS) in a mobile communication network includes determining whether a tunnel among new BSs is set up while tracking a data-flow for a Mobile Station (MS), if the tunnel among the new BSs is set up, determining whether there is a bounce-back, if there is at least one bounce-back, transmitting a first message for detecting a root of an arbitrary bounce-back among the at least one bounce-back and setting up a short-cut tunnel to other end of the arbitrary bounce-back, and after transmitting the first message, receiving a second message including bounce-back root information indicating the root of the arbitrary bounce-back from the other end of the arbitrary bounce-back. Other various embodiments including a source BS, a target BS, and a backhaul network are also disclosed.
Abstract:
Disclosed is a system and a method of signal transmission/reception by a mobile station in a wireless communication system. The method includes: transmitting a first sub-band preparation indicator, which indicates that the mobile station has been prepared for transmission/reception of a signal through a first sub-band, to a base station through a primary band; transmitting a first sub-band failure indicator to the base station through the primary band upon detecting failure in transmitting the first sub-band preparation indicator; receiving sub-band information on a second sub-band, which is different from the first sub-band, from the BS through the primary band; and acquiring synchronization with the second sub-band, so as to enable transmission/reception of a signal through the second sub-band based on the sub-band information.
Abstract:
A method of performing beamforming in a base station is provided. The method includes receiving random access channel signals transmitted in one or more transmit beams from a terminal, using one or more receive beams, determining at least one best transmit beam from the one or more transmit beams and at least one best receive beam from the one or more receive beams, and transmitting information about the best transmit beam and the best receive beam to the terminal.