Abstract:
A composite cathode active material including a lithium transition metal oxide, wherein the lithium transition metal oxide includes a layered structural phase and a spinel structural phase, and an amount of residual lithium is about 0.30 wt % or less; a cathode and a lithium battery including the composite cathode active material; and a method of preparing the composite cathode active material.
Abstract:
Provided are a nickel-based active material, a method of preparing the same, and a lithium secondary battery including a positive electrode including the nickel-based active material. The nickel-based active material includes at least one secondary particle including an aggregate of two or more primary particles, wherein at least a portion of the secondary particle has a radial array structure, and a hetero-element compound is positioned between the primary particles.
Abstract:
The present disclosure relates to a positive electrode active material, a preparing method therefor, and a lithium secondary battery including same. A positive electrode active material according to an embodiment comprises: a core including a lithium nickel composite oxide represented by Chemical Formula 1; and a surface layer present on the core and including at least one of a water-soluble ammonium-based organic compound and a water-soluble amine-based organic compound. The details of Chemical Formula 1 are as defined in the specification.
Abstract:
Provided are a nickel-based active material, a method of preparing the same, and a lithium secondary battery including a positive electrode including the nickel-based active material. The nickel-based active material includes at least one secondary particle including an aggregate of two or more primary particles, wherein at least a portion of the secondary particle has a radial array structure, and a hetero-element compound is positioned between the primary particles.
Abstract:
A composite positive active material includes a lithium nickel cobalt aluminum composite oxide. A full width at half maximum (FWHM) of a peak of a (104) plane of the lithium nickel cobalt aluminum composite oxide is 0.15 or less and an FWHM of a peak of a (108) plane of the lithium nickel cobalt aluminum composite oxide is 0.15 or less, the peaks being obtained by X-ray diffraction analysis using a CuKα X-ray. A method of preparing the composite positive active material, and a lithium secondary battery including a positive electrode including the composite positive active material are disclosed.
Abstract:
This application relates to a composite positive electrode active material for a lithium secondary battery. The composite positive electrode active material includes a nickel-based active material and a cobalt-boron compound-containing coating layer formed on a surface of the nickel-based active material. The application also relates to a method of preparation of the composite positive electrode active material. The application further relates to a lithium secondary battery including a positive electrode containing the composite positive electrode active material.
Abstract:
Provided are a composite cathode active material for a lithium ion battery including a nickel-rich lithium nickel-based compound having a nickel content of 50 to 100 mol % based on a total content of transition metals; and a coating film including a rare earth metal hydroxide and disposed on the surface of the nickel-rich lithium nickel-based compound, a manufacturing method therefor, and a lithium ion battery including a cathode including the composite cathode active material.