Abstract:
A positive active material for a rechargeable lithium battery includes nickel-based lithium transition metal oxide secondary particles, in which a plurality of primary particles are aggregated. The primary particles include polycrystalline primary particles composed of 2 to 10 single crystals, and each of the single crystals has a particle diameter of about 0.5 μm to about 3 μm.
Abstract:
A nickel-based active material, a positive electrode including the same, and a lithium secondary battery including the positive electrode, a negative electrode, and an electrolyte between the positive electrode and the negative electrode are provided. The nickel-based active material includes 80 mol % or more of nickel with respect to the metal elements excluding lithium, and the nickel-based active material includes: i) large secondary particles having a size in a range of 10 μm to 20 μm and including aggregates of primary particles having a size of 1 μm or less; ii) large crystal particles including primary particles having a size in a range of 1 μm to 5 μm; and iii) small secondary particles having a size in a range of 1 μm to 7 μm and including aggregates of primary particles having a size of 1 μm or less.
Abstract:
Provided are a composite cathode active material for a lithium ion battery including a nickel-rich lithium nickel-based compound having a nickel content of 50 to 100 mol % based on a total content of transition metals; and a coating film including a rare earth metal hydroxide and disposed on the surface of the nickel-rich lithium nickel-based compound, a manufacturing method therefor, and a lithium ion battery including a cathode including the composite cathode active material.
Abstract:
A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode are provided. The composite cathode active material includes a core including a lithium metal oxide and a coating layer on the core, wherein the lithium metal oxide includes two or more transition metals including nickel (Ni), an amount of Ni within one mole of the two or more transition metals included in the lithium metal oxide is about 0.65 mol or greater, the coating layer includes LiF, and a resistance of the composite cathode active material is lower than that of the core.
Abstract:
A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode are provided. The composite cathode active material includes a core including a lithium metal oxide and a coating layer on the core, wherein the lithium metal oxide includes two or more transition metals including nickel (Ni), an amount of Ni within one mole of the two or more transition metals included in the lithium metal oxide is about 0.65 mol or greater, the coating layer includes LiF, and a resistance of the composite cathode active material is lower than that of the core.
Abstract:
Provided are a cobalt oxide (Co3O4) for a lithium secondary battery, having an average particle diameter (D50) of about 14 μm to about 19 μm and a tap density of about 2.1 g/cc to about 2.9 g/cc, a method of preparing the cobalt oxide, a lithium cobalt oxide for a lithium secondary battery prepared from the cobalt oxide, and a lithium secondary battery including a cathode including the lithium cobalt oxide.
Abstract:
A cobalt oxide for a lithium secondary battery, a method of preparing the cobalt oxide; a lithium cobalt oxide for a lithium secondary battery formed from the cobalt oxide; and a lithium secondary battery having a positive electrode including the lithium cobalt oxide, the cobalt oxide having a tap density of about 2.8 g/cc to about 3.0 g/cc, and an intensity ratio of about 0.8 to about 1.2 of a second peak at 2θ of about 31.3±1° to a first peak at 2θ of about 19±1° in X-ray diffraction spectra, as analyzed by X-ray diffraction.
Abstract:
A nickel-based active material, a positive electrode including the same, and a lithium secondary battery including the positive electrode, a negative electrode, and an electrolyte between the positive electrode and the negative electrode are provided. The nickel-based active material includes 80 mol % or more of nickel with respect to the metal elements excluding lithium, and the nickel-based active material includes: i) large secondary particles having a size in a range of 10 μm to 20 μm and including aggregates of primary particles having a size of 1 μm or less; ii) large crystal particles including primary particles having a size in a range of 1 μm to 5 μm; and iii) small secondary particles having a size in a range of 1 μm to 7 μm and including aggregates of primary particles having a size of 1 μm or less.
Abstract:
A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode are provided. The composite cathode active material includes a core including a lithium metal oxide and a coating layer on the core, wherein the lithium metal oxide includes two or more transition metals including nickel (Ni), an amount of Ni within one mole of the two or more transition metals included in the lithium metal oxide is about 0.65 mol or greater, the coating layer includes LiF, and a resistance of the composite cathode active material is lower than that of the core.
Abstract:
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.