Abstract:
An optical lens element including a first surface; and a second surface of complementary curvature; at least one surface exhibiting significant deviation in curvature from a standard optical surface; the first and second surfaces in combination defining an optical zone exhibiting substantially constant mean through power along at least one meridian.
Abstract:
A method, a system and a computer program for determining an eyeglass prescription for an eye are disclosed. Initially, information about a measurement indicative of the refractive properties of the eye is received. Subsequently, a mathematical representation of wavefront aberrations of the eye is determined from the measurement. The mathematical representation includes a multitude of polynomials, each polynomial having an azimuthal order and a radial order. Further, the mathematical representation includes at least a first polynomial group having a common radial order, wherein the common radial order is higher than two. The eyeglass prescription is determined based on a merit function, wherein each polynomial of the first polynomial group that is used in the merit function has an azimuthal order of −2, 0, or 2, respectively.
Abstract:
An optical lens element including a first surface; and a second surface of complementary curvature; at least one surface exhibiting significant deviation in curvature from a standard optical surface; the first and second surfaces in combination defining an optical zone exhibiting substantially constant mean through power along at least one meridian.
Abstract:
The present invention relates to novel ophthalmic lens elements and eyewear having wide field of view, low distortion, improved astigmatism correction where required and enhanced eye protection properties. Series of lens elements have steeply curved spherical reference surfaces. The edged lenses of the series have approximately consistent aperture size, shape and hollow depth across a range of common prescriptions.
Abstract:
A method and apparatus for automated measuring of a diameter of a first region enclosed in a second region internal to a living organism, wherein the first and second regions consist of different cellular matter. One embodiment of the invention includes generating a plurality of trial diameters, wherein each trial diameter includes an inner and outer region and has a different length. An ultrasonic measurement is taken of the inner region and the outer region for each trial diameter. The difference is determined for the ultrasonic measurements corresponding to the inner and outer regions of each trial diameter. The trial diameter which most closely corresponds to the diameter of the first region is then selected, wherein the difference of the ultrasonic measurements corresponding to the inner and outer regions is greatest for the trial diameter which most closely corresponds to the diameter of the first region.
Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
The current disclosure is directed to a method for determining an improved design for a progressive spectacle lens. Further, there are provided a method for manufacturing a progressive spectacle lens, a system for determining an improved design for a progressive spectacle lens, a non-transitory computer program and a progressive spectacle lens.
Abstract:
An article for performing a subjective refraction includes a lens having a mean power that varies across the lens in a first direction and a cylindrical power that varies across the lens in a second direction, orthogonal to the first direction, wherein the mean power varies by four diopters or more and the cylindrical power varies by four diopters or more.
Abstract:
The present invention relates to novel ophthalmic lens elements and eyewear having wide field of view, low distortion, improved astigmatism correction where required and enhanced eye protection properties. Series of lens elements have steeply curved spherical reference surfaces. The edged lenses of the series have approximately consistent aperture size, shape and hollow depth across a range of common prescriptions. Novel sunglasses, laser protective eyewear, and lens edgings, coatings and frames are included in the invention.
Abstract:
A method and apparatus for automatically measuring the circumference of a first region enclosed in a second region internal to a living organism, wherein the first and second regions consist of different cellular matter. One embodiment of the present invention includes generating a point inside an interior of the first region. A set of radial vectors are then generated, which emanate from the point in the interior of the first region. A path is then selected which intersects the set of radial vectors. The path is selected by identifying a distinguishable ultrasonic measurement along the respective radial vectors. A length of the selected path is then measured to generate the circumference of the first region.