RECESSED HARDMASK USED TO FORM HAMR NFT HEAT SINK

    公开(公告)号:US20170194022A1

    公开(公告)日:2017-07-06

    申请号:US14987058

    申请日:2016-01-04

    IPC分类号: G11B5/127

    摘要: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.

    Recessed hardmask used to form heat-assisted magnetic recording near-field transducer with heat sink

    公开(公告)号:US11456008B2

    公开(公告)日:2022-09-27

    申请号:US16291465

    申请日:2019-03-04

    摘要: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.

    RECESSED HARDMASK USED TO FORM HAMR NFT HEAT SINK

    公开(公告)号:US20190198046A1

    公开(公告)日:2019-06-27

    申请号:US16291465

    申请日:2019-03-04

    摘要: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.

    Recessed hardmask used to form HAMR NFT heat sink

    公开(公告)号:US10224064B2

    公开(公告)日:2019-03-05

    申请号:US14987058

    申请日:2016-01-04

    摘要: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.