Abstract:
A reader having a sensor stack and a top shield above the sensor stack. The top shield has an upper surface and a lower surface. The reader also includes at least one side shield below the top shield and adjacent to the sensor stack. The reader further includes a decoupling layer between the upper surface of the top shield and the at least one side shield. The decoupling layer is configured to decouple a first portion of the at least one side shield, proximate to the sensor stack, from at least a portion of the top shield.
Abstract:
A multi-sensor reader includes first and second read sensors. The first read sensor includes a first sensor stack including a sensing layer having a magnetization that changes according to an external magnetic field, and a first biasing component configured to magnetically bias the sensing layer of the first sensor stack in a first direction. The second read sensor includes a second sensor stack including a sensing layer having a magnetization that changes according to an external magnetic field, and a second biasing component configured to magnetically bias the sensing layer of the second sensor stack in a second direction that is substantially opposite the first direction.
Abstract:
A recording head that includes a reader having a front end at a bearing surface of the recording head and a rear end behind the bearing surface. The reader has a non-rectangular shape with a front-end width that is less than an average width of the reader. A first bias element is positioned proximate to a first side of the reader, and a second bias element is positioned proximate to a second side of the reader. Each of the first and second bias elements has a bias level that is a function of a ratio of the front-end width to the average width of the reader.
Abstract:
A method of forming a read head. The method includes forming first and second read sensors that are substantially trapezoidal in shape. A first read measurement is performed on a storage medium using the first read sensor. A second read measurement is performed on the storage medium using the second read sensor. Based on a comparison of the first and second read measurements to a predetermined quantity, either the first read sensor or the second read sensor is selected to be operational in a data storage device.
Abstract:
A method of forming a read head. The method includes forming first and second read sensors. A first read measurement is performed on a storage medium using the first read sensor. A second read measurement is performed on the storage medium using the second read sensor. Based on a comparison of the first and second read measurements to a predetermined quantity, either the first read sensor or the second read sensor is selected to be operational in a data storage device.
Abstract:
A multi-sensor reader that includes a first sensor that has a first sensor stack, which includes a sensing layer that has a magnetization that changes according to an external magnetic field. The first sensor also includes a first seed layer below the first sensor stack. The multi-sensor reader also includes a second sensor stacked over the first sensor. The second sensor includes a second sensor stack, which includes a sensing layer that has a magnetization that changes according to the external magnetic field. The second sensor also includes a second seed layer below the second sensor stack. A stabilization element is included to maintain a magnetization direction of the second seed layer and to stabilize the second seed layer.
Abstract:
Implementations described and claimed herein provide a system comprising an external magnetic field generator, wherein the external field magnetic field generator is configured to rock an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure.
Abstract:
A multi-sensor reader that includes a first sensor that has a sensor stack, which includes a free layer (FL) that has a magnetization that changes according to an external magnetic field. The first sensor also includes a shielding structure that is positioned over the sensor stack. The multi-sensor reader also includes a second sensor stacked over the first sensor. The second sensor includes a sensor stack, which includes a FL that has a magnetization that changes according to the external magnetic field. The multi-sensor reader further includes an isolation layer between the first sensor and the second sensor. A FL-to-FL spacing reduction feature is included in at least one of the isolation layer or the shielding structure.
Abstract:
Implementations described and claimed herein provide a system comprising an external magnetic field generator, wherein the external field magnetic field generator is configured to rock an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure.
Abstract:
Implementations disclosed herein provide a method comprising rocking an effective annealing magnetic field between a first positive angle and a second negative angle compared to a desired pinning field orientation in an AFM/PL structure, wherein an angular amplitude of rocking the effective annealing magnetic field between a first positive angle and a second negative angle gradually decreases towards the desired orientation of pinning in the AFM/PL structure.