Abstract:
Provided is a semiconductor non-volatile memory device capable of improving the accuracy of trimming by creating a written state before data is written into a non-volatile memory element. The semiconductor non-volatile memory device includes: a written data transmission circuit for transmitting written data to a non-volatile memory element; a first switch connected between the non-volatile memory element and a data output terminal; a third switch connected to an output terminal of the written data transmission circuit; and a control circuit for controlling the respective switches. When a test mode signal is input, the control circuit turns on only the first switch and the third switch so as to control the written data to be output to the data output terminal before data is written into the non-volatile memory element.
Abstract:
The analog electronic watch includes: a crystal oscillator; an oscillator circuit; a frequency divider circuit; an output control circuit; a constant voltage circuit; and a cell. The constant voltage circuit and the output control circuit are powered from the cell. The oscillator circuit and the frequency divider circuit are powered from the constant voltage circuit. The constant voltage circuit is capable of outputting a first constant voltage and a second constant voltage in a switchable manner. The second constant voltage is a voltage which is equal to or lower than a cell voltage. The first constant voltage is a voltage which is smaller than the second constant voltage. The constant voltage is switched to the second constant voltage in a period of outputting the motor drive pulse.
Abstract:
To provide a voltage detection circuit in which the influence on a detection voltage by semiconductor manufacturing variations is small and which is small in current consumption. A voltage detection circuit is provided which detects a voltage, based on an output signal of a detection circuit and outputs a detection signal. The detection circuit includes a first MOS transistor unit which allows a first current to flow, a second MOS transistor unit which allows a second current to flow, and a current voltage conversion unit which converts each of the first current and the second current into a voltage and outputs the same as the detection signal. A voltage characteristic of the first current and a voltage characteristic of the second current are configured so as to be crossed with each other at a predetermined voltage.
Abstract:
The present invention provides a data reading device capable of preventing erroneous writing during an operation of reading data from a non-volatile memory element. The data reading device includes a dummy reading circuit provided with a non-volatile memory element, the writing voltage of which is lower than that of a non-volatile memory element of a data reading circuit, and a state detection circuit that detects a written state of the non-volatile memory element of the dummy reading circuit. Upon detection of erroneous writing to the non-volatile memory element of the dummy reading circuit during a data reading operation, the data reading operation is immediately terminated.
Abstract:
Provided is an oscillation stop detection circuit having low current consumption, which is capable of detecting stop of oscillation regardless of whether an input signal stops at High or Low and thereby accurately measuring an oscillation stop detection period. The oscillation stop detection circuit includes: a pulse generation circuit for outputting a one-shot pulse in synchronization with an oscillation signal input from an input terminal; a capacitor including one terminal connected to a first power supply terminal and another terminal connected to an output terminal; a constant current circuit connected between the first power supply terminal and the another terminal of the capacitor; and a switch circuit connected between an output terminal of the pulse generation circuit and the another terminal of the capacitor, for connecting the another terminal of the capacitor to a second power supply terminal based on the one-shot pulse.