Abstract:
A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
Abstract:
To increase the amount of lithium ions that can be received in and released from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A lithium manganese oxide particle includes a first region and a second region. The valence number of manganese in the first region is lower than the valence number of manganese in the second region. The lithium manganese oxide has high structural stability and high capacity characteristics.
Abstract:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
Abstract:
A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
Abstract:
A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed. In addition, since the outer coating layer in contact with an electrolyte solution is the compound of representative elements which is chemically stable, the secondary battery having excellent cycle characteristics can be obtained.
Abstract:
A mixture of amorphous PAHs and at least one of a carrier ion storage metal, a Sn compound, a carrier ion storage alloy, a metal compound, Si, Sb, and SiO2 is used as the negative electrode active material. The theoretical capacity of amorphous PAHs greatly exceeds that of a graphite based carbon material. Thus, the use of amorphous PAHs enables the negative electrode active material to have a higher capacity than in the case of using the graphite-based carbon material. Further, addition of at least one of the carrier ion storage metal, the Sn compound, the carrier ion storage alloy, the metal compound, Si, Sb, and SiO2 to the amorphous PAHs enables the negative electrode active material to have a higher capacity than the case of only using the amorphous PAHs.
Abstract:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
Abstract:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
Abstract:
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
Abstract:
A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.