Abstract:
A method and apparatus of identifying the source of materials in a video sequence is disclosed. A series of pseudo frames is formed, for example by interleaving, from fields in adjacent frames. A correlation value is calculated for each of the pseudo frames. The correlation value may be a sum of absolute difference (SAD) of luminance values of every neighboring scan line accumulated over the entire pseudo frame. Scene changes may be determined, for example, based on the correlation values. Frames and repeated fields are identified based on the correlation values and the scene changes. Finally, the source of each frame in the series is identified based on the identification of frames and repeated fields.
Abstract:
A static content addressable memory (CAM) cell. The CAM cell includes a latch having complementary data nodes capacitively coupled to ground, first and second access transistors, each coupled between a data node of the latch and a respective data line. The gates of each access transistor is coupled to a word line such that when activated, the respective data node and data line are coupled. The CAM cell further includes a match circuit coupled to one of the complementary data nodes of the latch. The match circuit discharges a match line in response to a data value stored at the data node to which the match circuit is coupled and compare data present on the respective data line mismatching. Two of the CAM cells can be used to implement a full ternary CAM cell.
Abstract:
A high precision sub-pixel spatial alignment of digital images, one from a reference video signal and another from a corresponding test video signal, uses an iterative process and incorporates spatial resampling along with basic correlation and estimation of fractional pixel shift. The corresponding images from the reference and test video signals are captured and a test block is overlaid on them at the same locations to include texture from the images. FFTs are performed within the test block in each image, and the FFTs are cross-correlated to develop a peak value representing a shift position between the images. A curve is fitted to the peak and neighboring values to find the nearest integer pixel shift position. The test block is shifted in the test image by the integer pixel shift position, and the FFT in the test image is repeated and correlated with the FFT from the reference image. The curve fitting is repeated to obtain a fractional pixel shift position value that is combined with the integer pixel shift value to update the test block position again in the test image. The steps are repeated until an end condition is achieved, at which point the value of the pixel shift position for the test block in the test image relative to the reference image is used to align the two images with high precision sub-pixel accuracy.
Abstract:
An apparatus and method for performing automatic exposure and gain control while minimizing oscillations as well as providing a good response time, for example, a lag time or a settling time of about one frame. The automatic exposure and gain controls are performed not only on the image as a whole but on a weighted region of interest. If the contrast in the image exceeds the dynamic range of the sensor array, then the image in the region of interest will improve at the expense of the remainder of the image. A region of interest is a selected subset of tiles upon which automatic exposure and gain control will be based. The tiles are defined by a grid system having grid coordinates, which are programmable. Image sensors have to receive feedback with regular updates of exposure and gain settings based on ever changing light conditions.
Abstract:
A method and system for adjusting saturation in digital images that operates as closely as possible to the long-, medium-, short-(LMS) cone spectral response space. According to the method, a sensor component image such as an RGB image from a digital imager is input and converted to the LMS space. White point adaptation and equalization are performed on the LMS data. The saturation adjustment is then performed by applying a stretching transformation to the L and S LMS components with respect to the M component of each pixel.
Abstract:
A static content addressable memory (CAM) cell. The CAM cell includes a latch having complementary data nodes capacitively coupled to ground, first and second access transistors, each coupled between a data node of the latch and a respective data line. The gates of each access transistor is coupled to a word line such that when activated, the respective data node and data line are coupled. The CAM cell further includes a match circuit coupled to one of the complementary data nodes of the latch. The match circuit discharges a match line in response to a data value stored at the data node to which the match circuit is coupled and compare data present on the respective data line mismatching. Two of the CAM cells can be used to implement a full ternary CAM cell.
Abstract:
A static content addressable memory (CAM) cell. The CAM cell includes a latch having complementary data nodes capacitively coupled to ground, first and second access transistors, each coupled between a data node of the latch and a respective data line. The gates of each access transistor is coupled to a word line such that when activated, the respective data node and data line are coupled. The CAM cell further includes a match circuit coupled to one of the complementary data nodes of the latch. The match circuit discharges a match line in response to a data value stored at the data node to which the match circuit is coupled and compare data present on the respective data line mismatching. Two of the CAM cells can be used to implement a full ternary CAM cell.
Abstract:
A technique for image alignment with global translation and linear stretch determines translation parameters for three corresponding linearly displaced blocks in a reference image and a corresponding distorted test image. From the differences between the translation parameters for the three blocks the presence of stretch is detected and, if detected, a stretch factor is estimated. The estimated stretch factor is used as a starting point to stretch the reference image to overlap the distorted test image as a refinement process. The resulting refined stretch factor is then used in a reverse stretch process to shrink the distorted test image, and the distorted test image is then aligned with the reference image to obtain picture quality metrics.
Abstract:
Refinement of motion block motion vectors to achieve a dense motion field for temporal video signal processing makes use of candidate motion vectors from a parent block and neighboring child block groups to determine the motion vector for a child block within one of the child block groups. The vicinity of each candidate motion vector may be searched to obtain a trial motion vector having a minimum displaced frame difference measure, with the trial motion vector with the minimum displaced frame difference measure from among all the trial motion vectors being the motion vector for the child block. Alternatively each candidate motion vector may be applied to the child block, and the vicinity of the candidate motion vector having the minimum displaced frame difference being searched to obtain the motion vector for the child block. If the minimum displaced frame difference is not less than a given threshold, the child block is segmented and the process repeated until the child block size is a single pixel or the minimum displaced frame difference is less than the threshold.
Abstract:
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.