Abstract:
A liquid crystal panel and manufacturing method thereof are provided. The liquid crystal panel includes: an array substrate provided with thin film transistors; a color filter substrate provided with primary photo-spacers and secondary photo-spacers. The primary photo-spacers correspond to the thin film transistors. Stage differences between the secondary photo-spacers and the primary photo-spacers decrease from the center of the panel to the boundaries thereof. Liquid crystal is filled within space between two substrates, which are then sealed. By applying a design that utilizes stage differences between the primary and secondary photo-spacers being different, optical performance decrease caused by non-uniform box thickness in different regions is prevented.
Abstract:
A flat display panel and manufacturing method are disclosed. The flat display panel includes a first substrate, a second substrate disposed oppositely to the first substrate. The second substrate is provided with a material layer having multiple concave slots. Multiple spacers are disposed on the first substrate and facing toward the second substrate. Wherein, multiple spacers include multiple main spacers and auxiliary spacers. The multiple auxiliary spacers respectively face toward regions which the multiple concave slots are located on, and the multiple main spacers respectively face toward regions which the multiple concave slots are not located on. A height of each main spacer and a height of each auxiliary spacer are the same such that when the flat display panel is not pressed, supporting the flat display panel through the main spacers, and when the flat display panel is pressed, further supporting the flat display panel through the auxiliary spacers.
Abstract:
The disclosure provides a liquid crystal display device and a liquid crystal display panel thereof. The liquid crystal display panel comprises a sealant and multiple first supportive members embedded in the sealant. The material of the plurality of first supportive members is the same as a second supportive member in a display region of the liquid crystal display panel. The first supportive member has a contact hole, such that the array substrate conducts with the color film substrate through the contact hole. The disclosure can avoid gap mura of the frame section, where the sealant is located. Meanwhile, a narrow frame of the liquid crystal display panel can be ensured, and the cost is lowered.
Abstract:
The present invention provides a curved display panel and a curved display apparatus. The curved display panel comprises a curved color filter substrate, a liquid crystal layer and a curved thin film transistor array substrate. The curved color filter substrate comprises a first curved substrate, a color-resisting array layer, a first protective layer and a common electrode; the curved thin film transistor array substrate comprises a second curved substrate and a pixel array layer. The present invention can diminish the dark fringes appearing in border areas of different domains.
Abstract:
A CF substrate with black matrixes with variable widths is disclosed. The CF substrate is curved with black matrixes (BMs) arranged thereon, portions that are not covered by the BMs form subpixel display areas, wherein widths of the black matrixes increase gradually from a vertical-central axis of the CF substrate toward two sides of the CF substrate. In addition, a liquid crystal device is also disclosed. The misplacement between the CF substrate and the TFT substrate of the curved LCD can be overcome. In addition, the problem resulting from increasing the width of the black matrix, such as the decreased aperture ratio and brightness, may also be solved. The uniform displaying performance is mainly achieved by optical compensation of the backlight sheet; also, the cost is relatively low.
Abstract:
A liquid crystal device and an array substrate are disclosed. At least one data line and at least one pixel cell are arranged on the array substrate. A gap is formed between the data line and the pixel cell, and an electrode is arranged on the gap to cover the gap. In this way, the light leakage is avoided.
Abstract:
The present invention provides a curved liquid crystal display panel. In the curved liquid crystal display panel of the present invention, a TFT substrate is provided thereon with a black matrix corresponding to a trunk portion of a pixel electrode such that portions of the sub-pixels within two opposite side zones of the curved liquid crystal display panel that generate dark patterns and portions of the sub-pixels within a central zone of the curved liquid crystal display panel having the same width as that of the dark patterns are shielded, whereby through sacrifice of a portion of aperture ratio, the brightness of the curved liquid crystal display panel is made homogenized through all areas thereof thereby preventing brightness difference between the central zone and two opposite side zones of the curved liquid crystal display panel.
Abstract:
The present invention provides a liquid crystal panel, in which a black matrix is formed on a TFT substrate and the black matrix includes a plurality of black light shielding frames respectively located in a plurality of pixel zones and arranged in the form of a matrix. The black light shielding frames are each set at a gap between a light blocking frame and data lines and scan lines along a periphery of an opening area of each of the pixel zones so that the liquid crystal panel of the present invention eliminates the occurrence of defect situations of light leaking and color shifting resulting from positional deviation of the black matrix caused by positional shift between upper and lower substrates and also provides a relatively high aperture ratio.
Abstract:
A display panel includes a first substrate and a second substrate disposed separately; a sealant disposed between the first substrate and the second substrate; and at least one color resist layer disposed between the first substrate and the second substrate; wherein, the at least one color resist layer and the sealant are disposed in an alternate arrangement, and are disposed between the first substrate and the second substrate in order to support the first substrate and the second substrate. A display device is also disclosed. Through replacing the spacers in the sealant with the color resist layer to support the first substrate and the second substrate, a display uneven phenomenon near the sealant of a narrow frame display panel is solved. In addition, because the color resist layer replaces the spacer, the cost of the spacer is saved so as to reduce the design cost.
Abstract:
The Present disclosure relates to the field of display technology and discloses an array substrate and a curved display device which can solve the technical problem of dark area on both sides of the existing curved display device. The array substrate according to the present disclosure comprises a number of sub pixel units arranged as an array, each sub pixel unit comprising a main sub pixel, a secondary sub pixel and a voltage-dividing capacitor. Said array substrate is divided into a compensation region and a non-compensation region. The capacitance of the voltage-dividing capacitor of the sub pixel unit in the compensation region is smaller than that of the voltage-dividing capacitor of the sub pixel unit in the non-compensation region. The present disclosure is applicable to curved display devices such as curved television and curved display, etc.