Abstract:
The present invention provides a curved liquid crystal display panel. In the curved liquid crystal display panel of the present invention, a TFT substrate is provided thereon with a black matrix corresponding to a trunk portion of a pixel electrode such that portions of the sub-pixels within two opposite side zones of the curved liquid crystal display panel that generate dark patterns and portions of the sub-pixels within a central zone of the curved liquid crystal display panel having the same width as that of the dark patterns are shielded, whereby through sacrifice of a portion of aperture ratio, the brightness of the curved liquid crystal display panel is made homogenized through all areas thereof thereby preventing brightness difference between the central zone and two opposite side zones of the curved liquid crystal display panel.
Abstract:
A curved LCD panel is provided. The curved LCD panel comprises a curved color filter substrate and a cured array substrate. A plurality of regions are formed along a longitudinal direction of the color filter substrate. In each of the regions of the color filter substrate, according to a greatest shifted distance between the color filter and the array substrate, a width of the black matrix within the region is predetermined. The black matrix can have different widths in the different regions to prevent the color shifting phenomenon.
Abstract:
The present invention provides a liquid crystal panel, in which a black matrix is formed on a TFT substrate and the black matrix includes a plurality of black light shielding frames respectively located in a plurality of pixel zones and arranged in the form of a matrix. The black light shielding frames are each set at a gap between a light blocking frame and data lines and scan lines along a periphery of an opening area of each of the pixel zones so that the liquid crystal panel of the present invention eliminates the occurrence of defect situations of light leaking and color shifting resulting from positional deviation of the black matrix caused by positional shift between upper and lower substrates and also provides a relatively high aperture ratio.
Abstract:
The present invention provides a curved display panel and a curved display apparatus. The curved display panel comprises a curved color filter substrate, a liquid crystal layer and a curved thin film transistor array substrate. The curved color filter substrate comprises a first curved substrate, a color-resisting array layer, a first protective layer and a common electrode; the curved thin film transistor array substrate comprises a second curved substrate and a pixel array layer. The present invention can diminish the dark fringes appearing in border areas of different domains.
Abstract:
The present invention provides a BOA liquid crystal panel and a manufacturing method thereof. The BOA liquid crystal panel includes a first substrate, a second substrate opposite to the first substrate, a black matrix arranged in the first substrate, a thin-film transistor arranged on the black matrix, a color resist layer arranged on the second substrate, a common electrode layer arranged on the second substrate and the color resist layer, a photoresist spacer arranged on the common electrode layer and located between the first substrate and the second substrate, and a liquid crystal layer arranged between the first substrate and the second substrate. The present invention arranges the black matrix of the liquid crystal panel in a channel that is pre-formed in a substrate to make the film thickness of the liquid crystal panel uniform and improve the display performance of the liquid crystal panel.
Abstract:
In the technical field of display, a color filter substrate and a curved display device, which can solve the technical problem of low aperture ratio of the existing curved display device, are provided. The color substrate comprises a plurality of sub pixel regions arranged as an array, and black matrixes for separating the sub pixel regions from each other. Measured along a transverse direction, the transverse width of each of all or some of the black matrixes located in the regions at both sides of the color filter substrate is smaller than that of each of the black matrixes located in the region at the center of the color filter substrate. The present disclosure can be applied to curved display device, such as liquid crystal television and curved liquid crystal display device.
Abstract:
Disclosed are a curved display panel and a curved display device. The curved display panel employs two data driving circuits which simultaneously output data signals to a same data line, and two scan driving circuits which simultaneously output scan signals to the same scan line, so that problems such as an image signal being distorted due to a terminal signal of a data line being seriously decayed, and a non-uniform display in brightness due to the scan line 202 being undercharged are prevented.
Abstract:
A color filter substrate and a curved surface display device are disclosed. The technical field of display is related to. Dark stripes appearing at a position corresponding to a central line of a sub pixel region can be eliminated, and a display effect of the curved display device can be improved. The color filter substrate includes a first light shading region corresponding to a gate line and a data line of an array substrate; and a second light shading region corresponding to a central line of a sub pixel region of the array substrate. A width of the second light shading region is larger than a width of the central line of the sub pixel region.
Abstract:
A liquid crystal panel and manufacturing method thereof are provided. The liquid crystal panel includes: an array substrate provided with thin film transistors; a color filter substrate provided with primary photo-spacers and secondary photo-spacers. The primary photo-spacers correspond to the thin film transistors. Stage differences between the secondary photo-spacers and the primary photo-spacers decrease from the center of the panel to the boundaries thereof. Liquid crystal is filled within space between two substrates, which are then sealed. By applying a design that utilizes stage differences between the primary and secondary photo-spacers being different, optical performance decrease caused by non-uniform box thickness in different regions is prevented.
Abstract:
A curved display panel and a curved display device are disclosed. Long sides of each sub-pixels are parallel to long sides of the curved display panel, short sides of each sub-pixels are parallel to short sides of the curved display panel. The curved display panel with such a configuration can greatly reduce the area of the black clots on both sides of the curved display panel, and reduce the color cast on the left and right regions of the curved display panel, which reduces the uneven picture problem of the curved display panel.