摘要:
A solid state imaging apparatus includes: a plurality of photoelectric conversion cells each including a plurality of photoelectric sections arranged in an array of at least two rows and two columns; a plurality of floating diffusion sections each being connected to each of ones of the photoelectric sections which are included in the same row of each said photoelectric conversion cell via each of a plurality of transfer transistors, and being shared by said ones of the photoelectric sections; a plurality of read-out lines each being selectively connected to at least two of the transfer transistors; and a plurality of pixel amplifier transistors each detecting and outputting the potential of each said the floating diffusion section. Charges of the photoelectric conversion sections each being connected to one of the read-out lines and being read out by the transfer transistors are read out by different floating diffusion sections.
摘要:
A first semiconductor chip includes a fixed electrode formed on a first semiconductor substrate and a plurality of first metal spacers formed on a first interlayer dielectric. A second semiconductor chip includes a vibrating electrode formed on a second semiconductor substrate and a plurality of second metal spacers formed on a second interlayer dielectric. The first and second semiconductor chips are metallically bonded to each other using the first and second metal spacers. An air gap is formed in a region of the condenser microphone located between the first semiconductor chip and the second semiconductor chip except bonded regions of the first and second metal spacers.
摘要:
A semiconductor device of the present invention includes a substrate; an imaging region which is formed at part of the substrate and in which photoelectric conversion cells including photoelectric conversion sections are arranged in the form of an array; a control-circuit region which is formed at part of the substrate and in which the imaging region is controlled and a signal from the imaging region is outputted; and a copper-containing interconnect layer formed above the substrate and made of a material containing copper. Furthermore, a first anti-diffusion layer and a second anti-diffusion layer are formed, as anti-diffusion layers for preventing the copper from diffusing into each photoelectric conversion section, on the photoelectric conversion section and the copper-containing interconnect layer, respectively.
摘要:
A semiconductor device of the present invention includes a substrate; an imaging region which is formed at part of the substrate and in which photoelectric conversion cells including photoelectric conversion sections are arranged in the form of an array; a control-circuit region which is formed at part of the substrate and in which the imaging region is controlled and a signal from the imaging region is outputted; and a copper-containing interconnect layer formed above the substrate and made of a material containing copper. Furthermore, a first anti-diffusion layer and a second anti-diffusion layer are formed, as anti-diffusion layers for preventing the copper from diffusing into each photoelectric conversion section, on the photoelectric conversion section and the copper-containing interconnect layer, respectively.
摘要:
A semiconductor device of the present invention includes a substrate; an imaging region which is formed at part of the substrate and in which photoelectric conversion cells including photoelectric conversion sections are arranged in the form of an array; a control-circuit region which is formed at part of the substrate and in which the imaging region is controlled and a signal from the imaging region is outputted; and a copper-containing interconnect layer formed above the substrate and made of a material containing copper. Furthermore, a first anti-diffusion layer and a second anti-diffusion layer are formed, as anti-diffusion layers for preventing the copper from diffusing into each photoelectric conversion section, on the photoelectric conversion section and the copper-containing interconnect layer, respectively.
摘要:
A semiconductor device of the present invention includes a substrate; an imaging region which is formed at part of the substrate and in which photoelectric conversion cells including photoelectric conversion sections are arranged in the form of an array; a control-circuit region which is formed at part of the substrate and in which the imaging region is controlled and a signal from the imaging region is outputted; and a copper-containing interconnect layer formed above the substrate and made of a material containing copper. Furthermore, a first anti-diffusion layer and a second anti-diffusion layer are formed, as anti-diffusion layers for preventing the copper from diffusing into each photoelectric conversion section, on the photoelectric conversion section and the copper-containing interconnect layer, respectively.
摘要:
A solid state imaging apparatus includes: a plurality of photoelectric conversion cells each including a plurality of photoelectric sections arranged in an array of at least two rows and two columns; a plurality of floating diffusion sections each being connected to each of ones of the photoelectric sections which are included in the same row of each said photoelectric conversion cell via each of a plurality of transfer transistors, and being shared by said ones of the photoelectric sections; a plurality of read-out lines each being selectively connected to at least two of the transfer transistors; and a plurality of pixel amplifier transistors each detecting and outputting the potential of each said the floating diffusion section. Charges of the photoelectric conversion sections each being connected to one of the read-out lines and being read out by the transfer transistors are read out by different floating diffusion sections.
摘要:
A solid state imaging apparatus includes: a plurality of photoelectric conversion cells each including a plurality of photoelectric sections arranged in an array of at least two rows and two columns; a plurality of floating diffusion sections each being connected to each of ones of the photoelectric sections which are included in the same row of each said photoelectric conversion via each of a plurality of transfer transistors, and being shared by said ones of the photoelectric sections; a plurality of read-out lines each being selectively connected to at least two of the transfer transistors; and a plurality of pixel amplifier transistors each detecting and outputting the potential of each said the floating diffusion section. Charges of the photoelectric conversion sections each being connected to one of the read-out lines and being read out by the transfer transistors are read out by different floating diffusion sections.
摘要:
A solid-state imaging device includes: an imaging portion in which a plurality of pixels for photoelectrically converting incident light are arranged so as to form a plural kinds of pixel lines having different color arrangements; a memory in which pixel signals obtained from the pixels of at least one line in the imaging portion are stored; an output signal line into which the pixel signals stored in the memory are read out; and an output portion from which signals of the output signal line are output. Pixel signals obtained from non-adjacent pixels of a first color in one line are read out into the output signal lines sequentially, and then pixel signals obtained from non-adjacent pixels of a second color are read out into the output signal lines sequentially. Pixel signals of the same color are output sequentially, so that it is not necessary to operate color selection switch for every pixel signals at high speed. Furthermore, it is possible to suppress the mixing of adjacent colors.
摘要:
A solid state imaging device includes: an imaging region formed in an upper part of a substrate made of silicon to have a photoelectric conversion portion, a charge accumulation region of the photoelectric conversion portion being of a first conductivity type; a device isolation region formed in at least a part of the substrate to surround the photoelectric conversion portion; and a MOS transistor formed on a part of the imaging region electrically isolated from the photoelectric conversion region by the device isolation region. The width of the device isolation region is smaller in its lower part than in its upper part, and the solid state imaging device further includes a dark current suppression region surrounding the device isolation region and being of a second conductivity type opposite to the first conductivity type.