Abstract:
A thermal analyzer has a heat sink for storing therein a specimen, a heater for heating the heat sink and the specimen, at superheating temperatures, and a cooling mechanism thermally connected to the heat sink for cooling the heat sink and the specimen. The cooling mechanism is comprised of a tubular member having an inlet port for introducing a cooling gas into the tubular member and an outlet port for discharging the cooling gas from the tubular member. A tubular extension is thermaly connected to and extends from the tubular member. An electric cooling device has a cooling head connected to the tubular extension for cooling the cooling mechanism.
Abstract:
A sliding contact surface-forming material includes a reinforcing base impregnated with a resol-type phenolic resin having polytetrafluoroethylene resin dispersed therein. The reinforcing base being composed of a woven fabric formed by using, respectively as the warp and the weft, a ply yarn which is formed by paralleling at least two strands of a single twist yarn spun from fluorine-containing resin fiber and a single twist yarn spun from polyester fiber, and by twisting them in the direction opposite to the direction in which the single twist yarns were spun. Additionally, a multi-layered sliding contact component having the overall shape of a flat plate or a circular cylinder includes the above-described sliding contact surface-forming material so as to configure at least the sliding-contact surface thereof.
Abstract:
A high-strength brass alloy for sliding members, consists of, by mass %, 17 to 28% of Zn, 5 to 10% of Al, 4 to 10% of Mn, 1 to 5% of Fe, 0.1 to 3% of Ni, 0.5 to 3% of Si, and the balance of Cu and inevitable impurities. The high-strength brass alloy has a structure that includes a matrix of a single phase structure of the β phase and includes at least one of Fe—Mn—Si intermetallic compounds in the form of aciculae, spheres, or petals dispersed in the β phase.
Abstract:
The present invention provides a pest controlling composition comprising, as active ingredients, an amide compound of the formula (I) and a neonicotinoid compound; and so on.
Abstract:
A differential scanning calorimeter (1) includes: a sample container (2) for receiving a measurement sample; a reference substance container (3) for receiving a reference substance; a heat sink (10); a thermal resistance (5), which is connected between the sample container and the heat sink, and between the reference substance container and the heat sink to form heat flow paths therebetween; a sample-side thermocouple (7), which is thermally connected to the thermal resistance at a portion in the vicinity of the sample container with its hot-junction (7c) being insulated; and a reference substance-side thermocouple (8), which is thermally connected to the thermal resistance at a portion in the vicinity of the reference substance container with its hot junction (8c) being insulated, in which the sample-side thermocouple and the reference substance-side thermocouple output a heat flow difference signal indicating a temperature difference between the measurement sample and the reference substance.
Abstract:
In a multilayered sintered sliding member, a porous sintered alloy layer comprising 3 to 10 wt. % of an Sn component, 10 to 30 wt. % of an Ni component, 0.5 to 4 wt. % of a P component, 30 to 50 wt. % of an Fe component, 1 to 10 wt. % of a high-speed tool steel component, 1 to 5 wt. % of a graphite component, and 20 to 55 wt. % of a copper component is integrally diffusion-bonded to a backing plate.
Abstract:
There is provided a differential scanning calorimeter possessing an accommodation chamber accommodating a sample to be measured and a reference material, a heater heating the accommodation chamber, a differential heat flow detector outputting a temperature difference between the sample to be measured and the reference material as a heat flow difference signal, a cooling block cooling-controlled to a predetermined temperature, a heat resistor which mechanically connects the cooling block and the accommodation chamber and forms a heat flow path between both, a first fixation means which fixes the heat resistor to the cooling block by pressing the former while being biased by a constant elastic force, and a second fixation means which fixes the accommodation chamber to the heat resistor by pressing the former while being biased by a constant elastic force.
Abstract:
To enable the reduction in working efforts by hand by performing control a drying operation by appropriately selecting dry conditions depending on the connection mode of the cooling device, and removal of moisture and the like without fail. The thermal analysis system uses a heater and a cooling device to raise and decrease the temperature inside the purge box. In the drying method for the thermal analysis system, the drying operation is performed by: previously setting dry conditions depending on the connection mode of the cooling device; starting control of an opening time dry process upon activation of the thermal analysis system; supplying a predetermined amount of dry gas into the purge box in accordance with the dry conditions corresponding to the selected connection mode of the cooling device with the cooling device kept off; and making the temperature control module control the temperature of the dry gas.
Abstract:
A high-strength brass alloy for sliding members, consists of, by mass %, 17 to 28% of Zn, 5 to 10% of Al, 4 to 10% of Mn, 1 to 5% of Fe, 0.1 to 3% of Ni, 0.5 to 3% of Si, and the balance of Cu and inevitable impurities. The high-strength brass alloy has a structure that includes a matrix of a single phase structure of the β phase and includes at least one of Fe—Mn—Si intermetallic compounds in the form of aciculae, spheres, or petals dispersed in the β phase.
Abstract:
To improve measurement accuracy by eliminating influence of a change of a temperature environment around a furnace of a thermal analyzer, the thermal analyzer includes a multilayer structure of at least two sealed layers for covering the furnace and its surroundings so as to isolate the furnace and its surroundings from an outside. An interlayer of the multilayer structure is loaded with a substance having a heat capacity equal to the heat capacity of a gas inside the furnace.