摘要:
A conical structure of cubic Boron Nitride (cBN) is formed on a diamond layered substrate. A method of forming the cBN structure includes steps of (a) forming diamond nuclei on a substrate, (b) growing a layer of diamond film on the substrate, (c) depositing a cBN film on said diamond layer, (d) pre-depositing nanoscale etching masks on the the cBN film, and (e) etching the the deposited cBN film. In particular, though not exclusively, the cubic Boron Nitride structure has great potential applications in probe analytical and testing techniques including scanning probe microscopy (SPM) and nanoindentation, nanomechanics and nanomachining in progressing microelectromechanical system (MEMS) and nanoelectyromechanical system (NEMS) devices, field electron emission, vacuum microelectronic devices, sensors and different electrode systems including those used in electrochemistry.
摘要:
A multilayer coating (MLC) is composed of two chemically different layered nanocrystalline materials, nanodiamond (nanoD) and nano-cubic boron nitride (nono-cBN). The structure of the MLC and fabrication sequence of layered structure are disclosed. The base layer is preferably nanoD and is the first deposited layer serving as an accommodation layer on a pretreated substrate. It can be designed with a larger thickness whereas subsequent alternate nano-cBN and nanoD layers are typically prepared with a thickness of 2 to 100 nm. The thickness of these layers can be engineered for a specific use. The deposition of the nanoD layer, by either cold or thermal plasma CVD, is preceded by diamond nucleation on a pretreated and/or precoated substrate, which has the capacity to accommodate the MLC and provides excellent adhesion. Nano-cBN layers are directly grown on nanodiamond crystallites using ion-assisted physical vapor deposition (PVD) and ion-assisted plasma enhanced chemical vapor deposition (PECVD), again followed by nanodiamond deposition using CVD methods in cycles until the intended number of layers of the MLC is obtained.
摘要:
The present invention deals with the generation of sharp single crystal diamond tips and the arrays of these tips, and their fabrication technology. The invention combines the deposition of synthetic diamond films with reactive etching processes. Upon the diamond orientation prepared and reactive etching environment with considerable directivity of ions, single crystal diamond tips with different apical angles can be fabricated. Very sharp diamond tips with an apical angle of no more than about 28° and a tip radius smaller than 50 nm are fabricated on pyramidal-shaped [001]-textured diamond films by subsequent reactive etching., The technology is based on selective etching of sp2- and sp3- hybridized carbons by the activated constituents of an etching environment, in particular based on atomic hydrogen, in a way similar to ion bombardment, which contributes to overall etching and local conversion of diamond to graphitic phase promoting further etching with chemically activated species. This novel method is capable of forming diamond tip arrays over large areas with great uniformity and high reproducibility. The diamond tips prepared are single diamond crystals with their [001] axes parallel each other and normal to the substrate surface. The invented technology enables the control of the apical angle, radius and density of the diamond tips.