摘要:
A method and system is provided for reducing surface roughness of a diesel engine component. The method and system may apply a voltage to a plasma electrolyte polishing cell. The plasma electrolyte polishing cell may include a diesel engine component and an aqueous electrolyte solution. The method and system may cause a plasma layer to form around a surface of the diesel engine component as a result of applying the voltage to the plasma electrolyte polishing cell. The method and system may terminate the voltage to the plasma electrolyte polishing cell. The method and system may apply a coating process to the diesel engine component.
摘要:
A transparent electrode with a transparent substrate and a composite layer disposed thereon, wherein the composite layer includes a graphene layer and a plurality of nanoparticles, wherein the nanoparticles are embedded in the graphene layer and extend through a thickness of the graphene layer, and wherein the plurality of nanoparticles are in direct contact with the transparent substrate and a gap is present between the graphene layer and the transparent substrate.
摘要:
The present disclosure relates to the technical field of composite coating preparation, in particular to a method for plasma-assisted and multi-step continuous preparation of a diffusion layer/amorphous carbon film composite coating and use thereof. In the present disclosure, a high-temperature plasma carburizing/nitriding technology and a low-temperature plasma carbon coating technology are combined by a plasma activation technology with argon ion under gradient cooling, and the surface of a material is activated by multiple bombardment on the surface of the material with high-energy argon ions. In this way, a cluster-like porous and loose structure on a surface of the diffusion layer is removed. In summary, the multi-step continuous preparation of the diffusion layer/amorphous carbon film composite coating is formed based on an integrated technology of the high-temperature plasma diffusion with nitrogen/carbon ion and plasma activation with argon ion under gradient cooling and plasma coating with low-temperature carbon ion.
摘要:
A composite substrate is resistant to the development of cracks, thereby not having deteriorating properties even when exposed to high-temperatures or low temperatures, and a method is provided for producing the composite substrate. The composite substrate 10 of the present invention has a supporting substrate 2, a stress relaxing interlayer 3, and an oxide single-crystal thin film 1 stacked in the listed order. The stress relaxing interlayer 3 has a thermal expansion coefficient between that of the supporting substrate 2 and that of the oxide single-crystal thin film 1.
摘要:
The invention is a method for chemical mechanical polishing a semiconductor substrate having cobalt or cobalt alloy containing features containing Co0. The method mixes 0.1 to 2 wt % hydrogen peroxide oxidizing agent (α) into a slurry containing 0.5 to 3 wt % colloidal silica particles (β), the colloidal silica particles containing primary particles, 0.5 to 2 wt % complexing agent (γ) selected from at least one of L-aspartic acid, nitrilotriacetic acid, nitrilotri(methylphosphonic acid), ethylenediamine-N,N′-disuccinic acid trisodium salt, and ethylene glycol-bis (2aminoethylether)-N,N,N′,N′-tetraacetic acid, and balance water having a pH of 5 to 9 to create a polishing slurry for the semiconductor substrate. Oxidizing at least a surface portion of the Co0 to Co+3 of the semiconductor substrate to prevent runaway dissolution of the Co0 reduces polishing defects in the semiconductor substrate. Polishing the semiconductor substrate with a polishing pad removes the surface portion of the semiconductor substrate oxidized to Co+3.
摘要:
Technology is described for an antiwetting coating attached to a substrate (e.g., metal substate) on a liquid metal container. In one example, the liquid metal container includes a first enclosure member, a second enclosure member, liquid metal, and an antiwetting coating. The first enclosure member includes a first substrate with a first surface. The second enclosure member includes a second substrate with a second surface. The first enclosure member is positioned proximate to the second enclosure member such that a gap is formed between the first surface and the second surface. The liquid metal positioned within the gap. An antiwetting coating attached to the first surface and/or the second surface. The antiwetting coating includes chromium nitride (CrN), dichromium nitride (Cr2N), chromium (III) oxide (Cr2O3), and/or titanium aluminum nitride (TiAlN) attached to the first surface and/or the second surface.
摘要:
Technology is described for an antiwetting coating attached to a substrate (e.g., metal substate) on a liquid metal container. In one example, the liquid metal container includes a first enclosure member, a second enclosure member, liquid metal, and an antiwetting coating. The first enclosure member includes a first substrate with a first surface. The second enclosure member includes a second substrate with a second surface. The first enclosure member is positioned proximate to the second enclosure member such that a gap is formed between the first surface and the second surface. The liquid metal positioned within the gap. An antiwetting coating attached to the first surface and/or the second surface. The antiwetting coating includes chromium nitride (CrN), dichromium nitride (Cr2N), chromium (III) oxide (Cr2O3), and/or titanium aluminum nitride (TiAlN) attached to the first surface and/or the second surface.
摘要:
A coated cutting tool comprising substrate and a coating, wherein the coating comprises a layer of MTCVD TiCN, and a layer of α-Al2O3, wherein the α-Al2O3 layer exhibits an X-ray diffraction pattern, as measured using CuKα radiation, the (hkl) reflections used are (012), (104), (110), (113), (116), (300), (214) and (0 0 12), and the TC(0 0 12) is higher than 5 and a full width half maximum (FWHM) of a rocking curve peak of the (0 0 12) plane of the α-Al2O3 is lower than 30°.
摘要:
A metal/polymer composite material is disclosed, wherein the metal/polymer composite material comprises a polymer base and a metal heat-dissipation layer. The heat-dissipation layer comprises a roughed surface with an isotropic surface roughness. The metal heat-dissipation conformally blankets over the roughed surface.
摘要:
An apparatus for applying a protective coating to a high volume of separate electronic device assemblies includes a treatment element that is configured to prepare the high volume of electronic devices before protective coatings are applied to the electronic devices. The apparatus also includes a coating element configured to apply protective coatings to the high volume of separate electronic device assemblies.