摘要:
Provided is a fullerene structure including: a column-shaped part; and a fin part projecting from the column-shaped part, in which both of the column-shaped part and the fin part are fullerenes. Provided is a method of manufacturing a fullerene structure including: heating a fullerene raw material to a sublimable temperature or higher under a non-oxidizing gas; and cooling an atmosphere in which the fullerene raw material is heated. In one example, the method includes supplying the non-oxidizing gas in one direction; heating the fullerene raw material to the sublimable temperature or higher at an upstream side of a supply direction of the non-oxidizing gas; and cooling the atmosphere in which the fullerene raw material is heated at a downstream side of the supply direction of the non-oxidizing gas.
摘要:
The present disclosure relates to a method of manufacturing a transferable lamella comprising interconnected nanostructures, the method comprising the steps of: a) providing a substrate such as a planar substrate; b) forming at least one superstructure on the substrate, said superstructure comprising a plurality of elongated nanostructures (formed e.g. by growth, deposition, and/or etching); wherein the elongated nanostructures are formed such that at least two of said nanostructures are conductively interconnected, and/or wherein at least a first layer is grown or deposited to conductively interconnect or insulate at least a part of the elongated nanostructures; c) encapsulating at least a portion of said superstructure in an encapsulating material, said portion comprising at least two interconnected nanostructures; and d) cutting the encapsulating material in a direction that intersects at least two interconnected nanostructures, thereby manufacturing a transferable lamella comprising interconnected nanostructures. The present disclosure further relates to an electronic device manufactured from one or more of the lamellas provided by the method.
摘要:
A method of manufacturing a scintillator, includes growing a scintillator layer constituted by a plurality of column crystals on a base, forming a first protection film so as to cover the scintillator layer, planarizing the first protection film, the planarizing including a polishing process of polishing the first protection film, and forming a second protection film configured to cover the first protection film that has undergone the planarizing. The scintillator layers grown on the base include an abnormally grown portion. In the polishing process, a front end of the abnormally grown portion is polished as well as a surface of the first protection film so as to form a continuation surface by the surface of the first protection film and a surface of the abnormally grown portion.
摘要:
The electronic device comprises a substrate (1), at least one semiconductor nanowire (2) and a buffer layer (3) interposed between the substrate (1) and said nanowire (2). The buffer layer (3) is at least partly formed by a transition metal nitride layer (9) from which extends the nanowire (2), said transition metal nitride being chosen from: vanadium nitride, chromium nitride, zirconium nitride, niobium nitride, molybdenum nitride, hafnium nitride or tantalum nitride.
摘要:
Embodiments of the present invention are directed to novel methods for the solution-based production of silver nanowires by adaptation of the polyol process. Some embodiments of the present invention can be practiced at lower temperature and/or at higher concentration than previously described methods. In some embodiments reactants are added in solid form rather than in solution. In some embodiments, an acid compound is added to the reaction.
摘要:
Embodiments of the present invention are directed to novel methods for the solution-based production of silver nanowires by adaptation of the polyol process. Some embodiments of the present invention can be practiced at lower temperature and/or at higher concentration than previously described methods. In some embodiments reactants are added in solid form rather than in solution. In some embodiments, an acid compound is added to the reaction.
摘要:
A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
摘要:
A method of producing nanoparticles comprises effecting conversion of a molecular cluster compound to the material of the nanoparticles. The molecular cluster compound comprises a first ion and a second ion to be incorporated into the growing nanoparticles. The conversion can be effected in the presence of a second molecular cluster compound comprising a third ion and a fourth ion to be incorporated into the growing nanoparticles, under conditions permitting seeding and growth of the nanoparticles via consumption of a first molecular cluster compound.
摘要:
Provided is a self-supporting gallium nitride substrate useful as an alternative material for a gallium nitride single crystal substrate, which is inexpensive and also suitable for having a large area. This substrate is composed of a plate composed of gallium nitride-based single crystal grains, wherein the plate has a single crystal structure in the approximately normal direction. This substrate can be manufactured by a method comprising providing an oriented polycrystalline sintered body; forming a seed crystal layer composed of gallium nitride on the sintered body so that the seed crystal layer has crystal orientation mostly in conformity with the crystal orientation of the sintered body; forming a layer with a thickness of 20 μm or greater composed of gallium nitride-based crystals on the seed crystal layer so that the layer has crystal orientation mostly in conformity with crystal orientation of the seed crystal layer; and removing the sintered body.
摘要:
A semiconductor substrate manufacturing method includes: epitaxially growing a columnar III nitride semiconductor single crystal on a principal place of a circular substrate; removing a hollow cylindrical region at an outer peripheral edge side of the III nitride semiconductor single crystal to leave a solid columnar region at an inside of the hollow cylindrical region of the III nitride semiconductor single crystal; and slicing the solid columnar region after removing the hollow cylindrical region. The hollow cylindrical region is removed such that the shape of the III nitride semiconductor single crystal is always keeps an axial symmetry that a center axis of the III nitride semiconductor single crystal is defined as a symmetric axis.