Abstract:
Common mode transient immunity for an isolation system is improved by using a common transient suppression circuit coupled to a receive circuit to suppress transients in signals received by the receive circuit that were transmitted from a transmit side of the isolation barrier using optical, magnetic, inductive, or other mechanisms.
Abstract:
Current flowing through an inductor on a primary side of a voltage converter is sensed and compared to a threshold peak current value to determine when to end an ON portion of the voltage converter. The secondary side of the voltage converter supplies an indication of output voltage for use in determining the threshold peak current value. On start-up the primary side detects when the indication of output voltage is supplied by the secondary side across on isolation channel. Prior to detecting the indicating is being supplied, the primary side uses an increasing threshold peak current as the threshold peak current value. After detection that the indication of output voltage is being provided by the secondary side, the threshold peak current value is based on the indication of the output voltage.
Abstract:
An analog signal is transported across an isolation channel using edge modulation/demodulation of a pulse width modulated (PWM) signal. An edge modulator is responsive to rising edges of the PWM signal to generate first pulses having a first predetermined pulse width and is responsive to receipt of falling edges of the PWM signal to generate second pulses having a second predetermined pulse width with the same polarity as the first pulses. On the opposite side of the isolation channel an edge demodulating circuit recreates the PWM signal using the first and second pulses. The rise and falling edges of the PWM signals can be distinguished based on the pulse width of the first and second pulses. A second order pulse width modulator may be used to generate the PWM signal.
Abstract:
An apparatus includes a first terminal, a second terminal, a bi-directional regulator circuit, and functional circuitry. The bi-directional regulator circuit generates a voltage across a first power supply node and a second power supply node in response to an input current flowing through the first terminal and the second terminal with a first polarity. The bi-directional regulator circuit also generates the voltage across the first power supply node and the second power supply node in response to the input current flowing through the first terminal and the second terminal with a second polarity opposite the first polarity. The functional circuitry is powered by the voltage and is configured to generate a signal using the voltage. The signal is indicative of the input current in response to the input current being supplied to the first terminal and is indicative of the input current in response to presence of the input current.
Abstract:
An analog signal is transported across an isolation channel using edge modulation/demodulation of a pulse width modulated (PWM) signal. An edge modulator is responsive to rising edges of the PWM signal to generate first pulses having a first predetermined pulse width and is responsive to receipt of falling edges of the PWM signal to generate second pulses having a second predetermined pulse width with the same polarity as the first pulses. On the opposite side of the isolation channel an edge demodulating circuit recreates the PWM signal using the first and second pulses. The rise and falling edges of the PWM signals can be distinguished based on the pulse width of the first and second pulses. A second order pulse width modulator may be used to generate the PWM signal.
Abstract:
A first integrated circuit die receives input data from a plurality of input channels and combines the input data from the plurality of input channels into combined data. The first integrated circuit die transmits the combined data across an isolation communication channel. A second integrated circuit die that is coupled to the isolation communication channel decodes the transmitted combined data and supplies the decoded transmitted combined data to respective output channels corresponding to the input channels.