Abstract:
A method of forming a semiconductor device starts with a substrate of silicon, a first insulation layer on the silicon, and a silicon layer on the first insulation layer. The silicon layer and the insulation layer are removed just from a second substrate area. A second insulation layer is formed over the silicon layer in the substrate first area and over the silicon in the second substrate area. A first plurality of trenches is formed in the first substrate area that each extends through all the layers and into the silicon. A second plurality of trenches is formed in the second substrate area that each extends through the second insulation layer and into the silicon. An insulation material is formed in the first and second trenches. Logic devices are formed in the first substrate area, and memory cells are formed in the second substrate area.
Abstract:
A semiconductor device having a silicon substrate with a first area including a buried insulation layer with silicon over and under the insulation layer and a second area in which the substrate lacks buried insulation disposed under any silicon. Logic devices are formed in the first area having spaced apart source and drain regions formed in the silicon that is over the insulation layer, and a conductive gate formed over and insulated from a portion of the silicon that is over the insulation layer and between the source and drain regions. Memory cells are formed in the second area that include spaced apart second source and second drain regions formed in the substrate and defining a channel region therebetween, a floating gate disposed over and insulated from a first portion of the channel region, and a select gate disposed over and insulated from a second portion of the channel region.
Abstract:
A method of operating a memory cell that comprises first and second regions spaced apart in a substrate with a channel region therebetween, a floating gate disposed over the channel region and the first region, a control gate disposed over the channel region and laterally adjacent to the floating gate with a portion disposed over the floating gate, and a coupling gate disposed over the first region and laterally adjacent to the floating gate. A method of erasing the memory cell includes applying a positive voltage to the control gate and a negative voltage to the coupling gate. A method of reading the memory cell includes applying positive voltages to the control gate, to the coupling gate, and to one of the first and second regions.