Abstract:
A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.
Abstract:
Various applications, systems and methods for using, and enhancing V2V communications for various purposes are described. These systems and methods leverage various aspects of satellite radio broadcasts in combination with V2V communications. In some embodiments, V2V-enabled vehicles can receive advertisements or offers from RSEs, or even other V2V enabled vehicles, in a defined Target Region, which may then be played to a user in-vehicle once a given Trigger Region has been entered. By logging all advertisements or offers played to a user and sending the log to an RSE, for example, and from there to a content provider (e.g., an SDARS service operator), verified delivery of advertisements is achieved, which allows the content provider to obtain significant revenues from advertisers. In return for uploading the playback record from the vehicle to the RSE, a variety of incentives may be offered, such as (i) free or discounted satellite radio subscription; (ii) download credits for music or videos from an online store; (iii) reduced or free tolls on toll roads (e.g., RSE embedded in a toll collection plaza); (iv) premium audio or video content, (v) credit at an online store; and (vi) a special coupon code redeemable for merchandise.
Abstract:
A method and apparatus are provided for generating a personalized radio channel playlist by simultaneously buffering multiple received channels from one or more source streams, and then selecting songs or tracks to playback from the buffered channels. Users can specify favorite channels for building their personal playlists, or multiple default playlist channels can be provided by genre or channels related in some other way. Navigation tools permit users to skip ahead and backward in the playback stream. A personalized radio channel playlist can be implemented as (1) content selected from buffered channels based on user preferences for artists, songs and the like, or (2) as a Mix Channel in which content from selected buffered channels is automatically mixed for playback in response to selection of a preset button assigned to the Mix Channel.
Abstract:
In exemplary embodiments of the present invention, a V2V unit in a vehicle (OBE) can, for example, store a plurality of years of encrypted certificates. The certificates can, for example, be programmed at an OBE factory using a secure server, and access to all certificates can be locked until an unlock key is computed for a given window (certificate validity period). An in-vehicle satellite receiver can then receive, over, for example, a dedicated satellite control channel, unlock codes for a current time window and a next time window, and provide them to the V2V device. Using those unlock codes, the V2V device (OBE) can compute an unlock key from an unlock code provided by the satellite receiver. In this manner an in-vehicle device may be directly messaged, but only to unlock one or more certificates at a controlled time. Without the received lock codes, the stored certificates are not useable.
Abstract:
A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.
Abstract:
A method and apparatus are provided for generating a personalized radio channel playlist by simultaneously buffering multiple received channels from one or more source streams, and then selecting songs or tracks to playback from the buffered channels. Users can specify favorite channels for building their personal playlists, or multiple default playlist channels can be provided by genre or channels related in some other way. Navigation tools permit users to skip ahead and backward in the playback stream. A personalized radio channel playlist can be implemented as (1) content selected from buffered channels based on user preferences for artists, songs and the like, or (2) as a Mix Channel in which content from selected buffered channels is automatically mixed for playback in response to selection of a preset button assigned to the Mix Channel.
Abstract:
A method and apparatus are provided for generating a personalized radio channel playlist by simultaneously buffering multiple received channels from one or more source streams, and then selecting songs or tracks to playback from the buffered channels. Users can specify favorite channels for building their personal playlists, or multiple default playlist channels can be provided by genre or channels related in some other way. Navigation tools permit users to skip ahead and backward in the playback stream. A personalized radio channel playlist can be implemented as (1) content selected from buffered channels based on user preferences for artists, songs and the like, or (2) as a Mix Channel in which content from selected buffered channels is automatically mixed for playback in response to selection of a preset button assigned to the Mix Channel.
Abstract:
A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.
Abstract:
Various multiple methods of data transport, and combinations thereof, may be used to initialize or update conditional access information on various devices. In an integrated device having both a broadcast receiver, such as an SDARS receiver, and a two-way communications transceiver, such as an LTE, 3G, 4G or 5G modem, or the like, conditional access information for the broadcast receiver may be sent to the transceiver, and then passed to the broadcast receiver, or vice versa. Additionally, for example, the broadcast receiver may be sent, over the broadcast communications channel, a “wake-up” message for the two-way transceiver, which message may then be passed to the two-way transceiver, so as to make it ready to receive conditional access information over the two-way communications channel, or vice versa. Moreover, because of the presence of a two-way communications path, various acknowledgements of conditional access status updates received and processed by the broadcast receiver may be sent—thus realizing a significant improvement over the current practice of sending multiple periodic messages over the broadcast channel, to insure (but never have confirmation of) receipt.
Abstract:
Various multiple methods of data transport, and combinations thereof, may be used to initialize or update conditional access information on various devices. In an integrated device having both a broadcast receiver, such as an SDARS receiver, and a two-way communications transceiver, such as an LTE, 3G, 4G or 5G modem, or the like, conditional access information for the broadcast receiver may be sent to the transceiver, and then passed to the broadcast receiver, or vice versa. Additionally, for example, the broadcast receiver may be sent, over the broadcast communications channel, a “wake-up” message for the two-way transceiver, which message may then be passed to the two-way transceiver, so as to make it ready to receive conditional access information over the two-way communications channel, or vice versa. Moreover, because of the presence of a two-way communications path, various acknowledgements of conditional access status updates received and processed by the broadcast receiver may be sent—thus realizing a significant improvement over the current practice of sending multiple periodic messages over the broadcast channel, to insure (but never have confirmation of) receipt.